IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50849-1.html
   My bibliography  Save this article

Transcriptional regulation of the postnatal cardiac conduction system heterogeneity

Author

Listed:
  • Yena Oh

    (University of Ottawa Heart Institute
    University of Ottawa)

  • Rimshah Abid

    (University of Ottawa Heart Institute
    University of Ottawa)

  • Saif Dababneh

    (University of Ottawa Heart Institute
    University of British Columbia)

  • Marwan Bakr

    (University of Ottawa Heart Institute
    University of Ottawa)

  • Termeh Aslani

    (University of Ottawa Heart Institute
    University of Ottawa)

  • David P. Cook

    (University of Ottawa
    Ottawa Hospital Research Institute)

  • Barbara C. Vanderhyden

    (University of Ottawa
    Ottawa Hospital Research Institute)

  • Jin G. Park

    (Arizona State University)

  • Nikhil V. Munshi

    (UT Southwestern Medical Center
    UT Southwestern Medical Center
    UT Southwestern Medical Center
    UT Southwestern Medical Center)

  • Chi-Chung Hui

    (The Hospital for Sick Children
    University of Toronto)

  • Kyoung-Han Kim

    (University of Ottawa Heart Institute
    University of Ottawa)

Abstract

The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.

Suggested Citation

  • Yena Oh & Rimshah Abid & Saif Dababneh & Marwan Bakr & Termeh Aslani & David P. Cook & Barbara C. Vanderhyden & Jin G. Park & Nikhil V. Munshi & Chi-Chung Hui & Kyoung-Han Kim, 2024. "Transcriptional regulation of the postnatal cardiac conduction system heterogeneity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50849-1
    DOI: 10.1038/s41467-024-50849-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50849-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50849-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xueying Tian & Yan Li & Lingjuan He & Hui Zhang & Xiuzhen Huang & Qiaozhen Liu & Wenjuan Pu & Libo Zhang & Yi Li & Huan Zhao & Zhifu Wang & Jianhong Zhu & Yu Nie & Shengshou Hu & David Sedmera & Tao P, 2017. "Identification of a hybrid myocardial zone in the mammalian heart after birth," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
    2. Francisco X. Galdos & Sidra Xu & William R. Goodyer & Lauren Duan & Yuhsin V. Huang & Soah Lee & Han Zhu & Carissa Lee & Nicholas Wei & Daniel Lee & Sean M. Wu, 2022. "devCellPy is a machine learning-enabled pipeline for automated annotation of complex multilayered single-cell transcriptomic data," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Sean A. Murphy & Matthew Miyamoto & Anaïs Kervadec & Suraj Kannan & Emmanouil Tampakakis & Sandeep Kambhampati & Brian Leei Lin & Sam Paek & Peter Andersen & Dong-Ik Lee & Renjun Zhu & Steven S. An & , 2021. "PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Kazumasa Kanemaru & James Cranley & Daniele Muraro & Antonio M. A. Miranda & Siew Yen Ho & Anna Wilbrey-Clark & Jan Patrick Pett & Krzysztof Polanski & Laura Richardson & Monika Litvinukova & Natsuhik, 2023. "Spatially resolved multiomics of human cardiac niches," Nature, Nature, vol. 619(7971), pages 801-810, July.
    5. Dandan Liang & Jinfeng Xue & Li Geng & Liping Zhou & Bo Lv & Qiao Zeng & Ke Xiong & Huixing Zhou & Duanyang Xie & Fulei Zhang & Jie Liu & Yi Liu & Li Li & Jian Yang & Zhigang Xue & Yi-Han Chen, 2021. "Cellular and molecular landscape of mammalian sinoatrial node revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Lan Ma & Chun-Yan Kong & Zhen Guo & Ming-Yu Wang & Pan Wang & Fang-Yuan Liu & Dan Yang & Zheng Yang & Qi-Zhu Tang, 2024. "Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Wei Feng & Abha Bais & Haoting He & Cassandra Rios & Shan Jiang & Juan Xu & Cindy Chang & Dennis Kostka & Guang Li, 2022. "Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Satoya Yoshida & Tatsuya Yoshida & Kohei Inukai & Katsuhiro Kato & Yoshimitsu Yura & Tomoki Hattori & Atsushi Enomoto & Koji Ohashi & Takahiro Okumura & Noriyuki Ouchi & Haruya Kawase & Nina Wettschur, 2024. "Protein kinase N promotes cardiac fibrosis in heart failure by fibroblast-to-myofibroblast conversion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Quinn T. Easter & Bruno Fernandes Matuck & Germán Beldorati Stark & Catherine L. Worth & Alexander V. Predeus & Brayon Fremin & Khoa Huynh & Vaishnavi Ranganathan & Zhi Ren & Diana Pereira & Brittany , 2024. "Single-cell and spatially resolved interactomics of tooth-associated keratinocytes in periodontitis," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    5. Tianyi Sun & Alexander Grassam-Rowe & Zhaoli Pu & Yangpeng Li & Huiying Ren & Yanru An & Xinyu Guo & Wei Hu & Ying Liu & Yuqing Zheng & Zhu Liu & Kun Kou & Xianhong Ou & Tangting Chen & Xuehui Fan & Y, 2023. "Dbh+ catecholaminergic cardiomyocytes contribute to the structure and function of the cardiac conduction system in murine heart," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    6. Ajita Shree & Musale Krushna Pavan & Hamim Zafar, 2023. "scDREAMER for atlas-level integration of single-cell datasets using deep generative model paired with adversarial classifier," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Hongyu Liu & Ran Duan & Xiaoyu He & Jincu Qi & Tianming Xing & Yahan Wu & Liping Zhou & Lingling Wang & Yujing Shao & Fulei Zhang & Huixing Zhou & Xingdong Gu & Bowen Lin & Yuanyuan Liu & Yan Wang & Y, 2023. "Endothelial deletion of PTBP1 disrupts ventricular chamber development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50849-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.