Author
Listed:
- Peng-Cheng Zhao
(Northwestern Polytechnical University)
- Xue-Xin Wei
(Northwestern Polytechnical University)
- Qiong Wang
(Northwestern Polytechnical University)
- Qi-Hao Wang
(Northwestern Polytechnical University)
- Jia-Ning Li
(Northwestern Polytechnical University)
- Jie Shang
(Northwestern Polytechnical University)
- Cheng Lu
(Institute of Basic Research in Clinical Medicine China Academy of Chinese Medical Sciences)
- Jian-Yu Shi
(Northwestern Polytechnical University)
Abstract
Inferring appropriate synthesis reaction (i.e., retrosynthesis) routes for newly designed molecules is vital. Recently, computational methods have produced promising single-step retrosynthesis predictions. However, template-based methods are limited by the known synthesis templates; template-free methods are weakly interpretable; and semi template-based methods are deficient with regard to utilizing the associations between chemical entities. To address these issues, this paper leverages the intra-associations between synthons, the inter-associations between synthons and leaving groups (LGs), and the intra-associations between LGs. It develops a multitask graph representation learning model for single-step retrosynthesis prediction (Retro-MTGR) to solve reaction centre deduction and LG identification simultaneously. A comparison with 16 state-of-the-art methods first demonstrates the superiority of Retro-MTGR. Then, its robustness and scalability and the contributions of its crucial components are validated. More importantly, it can determine whether a bond can be a reaction centre and what LGs are appropriate for a given synthon, respectively. The answers reflect underlying chemical synthesis rules, especially opposite electrical properties between chemical entities (e.g., reaction sites, synthons, and LGs). Finally, case studies demonstrate that the retrosynthesis routes inferred by Retro-MTGR are promising for single-step synthesis reactions. The code and data of this study are freely available at https://doi.org/10.5281/zenodo.14346324 .
Suggested Citation
Peng-Cheng Zhao & Xue-Xin Wei & Qiong Wang & Qi-Hao Wang & Jia-Ning Li & Jie Shang & Cheng Lu & Jian-Yu Shi, 2025.
"Single-step retrosynthesis prediction via multitask graph representation learning,"
Nature Communications, Nature, vol. 16(1), pages 1-19, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56062-y
DOI: 10.1038/s41467-025-56062-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56062-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.