IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50479-7.html
   My bibliography  Save this article

Anomalous flocking in nonpolar granular Brownian vibrators

Author

Listed:
  • Yangrui Chen

    (Shanghai Jiao Tong University)

  • Jie Zhang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

Using Brownian vibrators, we investigated the structures and dynamics of quasi-2d granular materials, with packing fractions (ϕ) ranging from 0.111 to 0.832. Our observations revealed a remarkable large-scale flocking behavior in hard granular disk systems, encompassing four distinct phases: granular fluid, flocking fluid, poly-crystal, and crystal. Anomalous flocking emerges at ϕ = 0.317, coinciding with a peak in local density fluctuations, and ceased at ϕ = 0.713 as the system transitioned into a poly-crystal state. The poly-crystal and crystal phases resembled equilibrium hard disks, while the granular and flocking fluids differed significantly from equilibrium systems and previous experiments involving uniformly driven spheres. This disparity suggests that collective motion arises from a competition controlled by volume fraction, involving an active force and an effective attractive interaction resulting from inelastic particle collisions. Remarkably, these findings align with recent theoretical research on the flocking motion of spherical active particles without alignment mechanisms.

Suggested Citation

  • Yangrui Chen & Jie Zhang, 2024. "Anomalous flocking in nonpolar granular Brownian vibrators," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50479-7
    DOI: 10.1038/s41467-024-50479-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50479-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50479-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian Scholz & Michael Engel & Thorsten Pöschel, 2018. "Publisher Correction: Rotating robots move collectively and self-organize," Nature Communications, Nature, vol. 9(1), pages 1-2, December.
    2. Nitin Kumar & Harsh Soni & Sriram Ramaswamy & A. K. Sood, 2014. "Flocking at a distance in active granular matter," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    3. Debarghya Banerjee & Anton Souslov & Alexander G. Abanov & Vincenzo Vitelli, 2017. "Odd viscosity in chiral active fluids," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    4. Christian Scholz & Michael Engel & Thorsten Pöschel, 2018. "Rotating robots move collectively and self-organize," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    5. G. W. Baxter & J. S. Olafsen, 2003. "Gaussian statistics in granular gases," Nature, Nature, vol. 425(6959), pages 680-680, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvin Modin & Matan Yah Zion & Paul M. Chaikin, 2023. "Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jing Wang & Gao Wang & Huaicheng Chen & Yanping Liu & Peilong Wang & Daming Yuan & Xingyu Ma & Xiangyu Xu & Zhengdong Cheng & Baohua Ji & Mingcheng Yang & Jianwei Shuai & Fangfu Ye & Jin Wang & Yang J, 2024. "Robo-Matter towards reconfigurable multifunctional smart materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Itai Carmeli & Celine M. Bounioux & Philip Mickel & Mark B. Richardson & Yael Templeman & Joel M. P. Scofield & Greg G. Qiao & Brian Ashley Rosen & Yelena Yusupov & Louisa Meshi & Nicolas H. Voelcker , 2023. "Unidirectional rotation of micromotors on water powered by pH-controlled disassembly of chiral molecular crystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Pragya Arora & Souvik Sadhukhan & Saroj Kumar Nandi & Dapeng Bi & A. K. Sood & Rajesh Ganapathy, 2024. "A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    7. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    8. Elizondo-Aguilera, Luis Fernando & Carrillo Ríos, Abraham & Rodríguez-Liñán, Gustavo M. & López González, Francisco & Donado, Fernando & Pacheco Vázquez, Felipe, 2023. "Structural and dynamical behavior of a vibrated granular system of hard-cubes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    9. Mallikarjun, Rahul & Pal, Arnab, 2023. "Chiral run-and-tumble walker: Transport and optimizing search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    10. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50479-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.