IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5688.html
   My bibliography  Save this article

Flocking at a distance in active granular matter

Author

Listed:
  • Nitin Kumar

    (Indian Institute of Science)

  • Harsh Soni

    (Indian Institute of Science
    TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research)

  • Sriram Ramaswamy

    (Indian Institute of Science
    TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research)

  • A. K. Sood

    (Indian Institute of Science)

Abstract

The self-organized motion of vast numbers of creatures in a single direction is a spectacular example of emergent order. Here, we recreate this phenomenon using actuated nonliving components. We report here that millimetre-sized tapered rods, rendered motile by contact with an underlying vibrated surface and interacting through a medium of spherical beads, undergo a phase transition to a state of spontaneous alignment of velocities and orientations above a threshold bead area fraction. Guided by a detailed simulation model, we construct an analytical theory of this flocking transition, with two ingredients: a moving rod drags beads; neighbouring rods reorient in the resulting flow like a weathercock in the wind. Theory and experiment agree on the structure of our phase diagram in the plane of rod and bead concentrations and power-law spatial correlations near the phase boundary. Our discovery suggests possible new mechanisms for the collective transport of particulate or cellular matter.

Suggested Citation

  • Nitin Kumar & Harsh Soni & Sriram Ramaswamy & A. K. Sood, 2014. "Flocking at a distance in active granular matter," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5688
    DOI: 10.1038/ncomms5688
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5688
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pragya Arora & Souvik Sadhukhan & Saroj Kumar Nandi & Dapeng Bi & A. K. Sood & Rajesh Ganapathy, 2024. "A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yangrui Chen & Jie Zhang, 2024. "Anomalous flocking in nonpolar granular Brownian vibrators," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.