IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50051-3.html
   My bibliography  Save this article

The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth

Author

Listed:
  • Aaron Franklin

    (University of Birmingham)

  • Vivian C. Salgueiro

    (Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid)

  • Abigail J. Layton

    (University of Birmingham)

  • Rudi Sullivan

    (University of Birmingham)

  • Todd Mize

    (University of Birmingham)

  • Lucía Vázquez-Iniesta

    (Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid)

  • Samuel T. Benedict

    (University of Birmingham)

  • Sudagar S. Gurcha

    (University of Birmingham)

  • Itxaso Anso

    (Spanish National Research Council)

  • Gurdyal S. Besra

    (University of Birmingham)

  • Manuel Banzhaf

    (University of Birmingham)

  • Andrew L. Lovering

    (University of Birmingham)

  • Spencer J. Williams

    (University of Melbourne)

  • Marcelo E. Guerin

    (Spanish National Research Council (CSIC))

  • Nichollas E. Scott

    (University of Melbourne at the Peter Doherty Institute for Infection and Immunity)

  • Rafael Prados-Rosales

    (Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid)

  • Elisabeth C. Lowe

    (Newcastle University)

  • Patrick J. Moynihan

    (University of Birmingham)

Abstract

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are trafficked from the bacterium to the host via unknown mechanisms. Arabinomannan is thought to be a capsular derivative of these molecules, lacking a lipid anchor. However, the mechanism by which this material is generated has yet to be elucidated. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH (Rv0365c in Mycobacterium tuberculosis) which specifically cleaves α−1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures, potentially implicating arabinomannan as a signal for growth phase transition. Finally, we demonstrate that LamH is important for M. tuberculosis survival in macrophages.

Suggested Citation

  • Aaron Franklin & Vivian C. Salgueiro & Abigail J. Layton & Rudi Sullivan & Todd Mize & Lucía Vázquez-Iniesta & Samuel T. Benedict & Sudagar S. Gurcha & Itxaso Anso & Gurdyal S. Besra & Manuel Banzhaf , 2024. "The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50051-3
    DOI: 10.1038/s41467-024-50051-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50051-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50051-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sille Remm & Dario Vecchis & Jendrik Schöppe & Cedric A. J. Hutter & Imre Gonda & Michael Hohl & Simon Newstead & Lars V. Schäfer & Markus A. Seeger, 2023. "Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Ian L. Sparks & Takehiro Kado & Malavika Prithviraj & Japinder Nijjer & Jing Yan & Yasu S. Morita, 2024. "Lipoarabinomannan mediates localized cell wall integrity during division in mycobacteria," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Patrick J. Moynihan & Ian T. Cadby & Natacha Veerapen & Monika Jankute & Marialuisa Crosatti & Galina V. Mukamolova & Andrew L. Lovering & Gurdyal S. Besra, 2019. "The hydrolase LpqI primes mycobacterial peptidoglycan recycling," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Fiona Cuskin & Elisabeth C. Lowe & Max J. Temple & Yanping Zhu & Elizabeth A. Cameron & Nicholas A. Pudlo & Nathan T. Porter & Karthik Urs & Andrew J. Thompson & Alan Cartmell & Artur Rogowski & Brian, 2015. "Correction: Corrigendum: Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism," Nature, Nature, vol. 520(7547), pages 388-388, April.
    5. Fiona Cuskin & Elisabeth C. Lowe & Max J. Temple & Yanping Zhu & Elizabeth A. Cameron & Nicholas A. Pudlo & Nathan T. Porter & Karthik Urs & Andrew J. Thompson & Alan Cartmell & Artur Rogowski & Brian, 2015. "Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism," Nature, Nature, vol. 517(7533), pages 165-169, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Al-Jourani & Samuel T. Benedict & Jennifer Ross & Abigail J. Layton & Phillip Peet & Victoria M. Marando & Nicholas P. Bailey & Tiaan Heunis & Joseph Manion & Francesca Mensitieri & Aaron Frankli, 2023. "Identification of d-arabinan-degrading enzymes in mycobacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Diego E. Sastre & Nazneen Sultana & Marcos V. A. S. Navarro & Maros Huliciak & Jonathan Du & Javier O. Cifuente & Maria Flowers & Xu Liu & Pete Lollar & Beatriz Trastoy & Marcelo E. Guerin & Eric J. S, 2024. "Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Lharbi Dridi & Fernando Altamura & Emmanuel Gonzalez & Olivia Lui & Ryszard Kubinski & Reilly Pidgeon & Adrian Montagut & Jasmine Chong & Jianguo Xia & Corinne F. Maurice & Bastien Castagner, 2023. "Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Jennifer L. Modesto & Victoria H. Pearce & Guy E. Townsend, 2023. "Harnessing gut microbes for glycan detection and quantification," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Alicia E. Graham & Rodrigo Ledesma-Amaro, 2023. "The microbial food revolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50051-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.