IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49974-8.html
   My bibliography  Save this article

Structure and exfoliation mechanism of two-dimensional boron nanosheets

Author

Listed:
  • Jing-Yang Chung

    (National University of Singapore
    National University of Singapore)

  • Yanwen Yuan

    (National University of Singapore
    National University of Singapore)

  • Tara P. Mishra

    (National University of Singapore)

  • Chithralekha Joseph

    (National University of Singapore)

  • Pieremanuele Canepa

    (National University of Singapore)

  • Pranay Ranjan

    (Indian Institute of Technology Jodhpur)

  • El Hadi S. Sadki

    (United Arab Emirates University)

  • Silvija Gradečak

    (National University of Singapore
    National University of Singapore)

  • Slaven Garaj

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

Abstract

Exfoliation of two-dimensional (2D) nanosheets from three-dimensional (3D) non-layered, non-van der Waals crystals represents an emerging strategy for materials engineering that could significantly increase the library of 2D materials. Yet, the exfoliation mechanism in which nanosheets are derived from crystals that are not intrinsically layered remains unclear. Here, we show that planar defects in the starting 3D boron material promote the exfoliation of 2D boron sheets—by combining liquid-phase exfoliation, aberration-corrected scanning transmission electron microscopy, Raman spectroscopy, and density functional theory calculations. We demonstrate that 2D boron nanosheets consist of a planar arrangement of icosahedral sub-units cleaved along the {001} planes of β-rhombohedral boron. Correspondingly, intrinsic stacking faults in 3D boron form parallel layers of faulted planes in the same orientation as the exfoliated nanosheets, reducing the {001} cleavage energy. Planar defects represent a potential engineerable pathway for exfoliating 2D sheets from 3D boron and, more broadly, the other covalently bonded materials.

Suggested Citation

  • Jing-Yang Chung & Yanwen Yuan & Tara P. Mishra & Chithralekha Joseph & Pieremanuele Canepa & Pranay Ranjan & El Hadi S. Sadki & Silvija Gradečak & Slaven Garaj, 2024. "Structure and exfoliation mechanism of two-dimensional boron nanosheets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49974-8
    DOI: 10.1038/s41467-024-49974-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49974-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49974-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhimi Hu & Xu Xiao & Huanyu Jin & Tianqi Li & Ming Chen & Zhun Liang & Zhengfeng Guo & Jia Li & Jun Wan & Liang Huang & Yanrong Zhang & Guang Feng & Jun Zhou, 2017. "Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Lian & Li Xu & Diana Piankova & Jin-Lin Yang & Nadezda V. Tarakina & Yang Wang & Markus Antonietti, 2024. "Metal-organic framework derived crystalline nanocarbon for Fenton-like reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Tianze Zhang & Libo Chang & Xiaofeng Zhang & Hujie Wan & Na Liu & Liujiang Zhou & Xu Xiao, 2022. "Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yuanyuan Zhang & Xiaohua Zhang & Quanquan Pang & Jianhua Yan, 2023. "Control of metal oxides’ electronic conductivity through visual intercalation chemical reactions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Li Jin & Xiaoyuan Zhou & Fang Wang & Xiang Ning & Yujie Wen & Benteng Song & Changju Yang & Di Wu & Xiaokang Ke & Luming Peng, 2022. "Insights into memory effect mechanisms of layered double hydroxides with solid-state NMR spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49974-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.