IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49941-3.html
   My bibliography  Save this article

A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level

Author

Listed:
  • Assunta Merolla

    (Istituto Italiano di Tecnologia
    IRCCS Ospedale Policlinico San Martino)

  • Caterina Michetti

    (Istituto Italiano di Tecnologia
    University of Genova)

  • Matteo Moschetta

    (Istituto Italiano di Tecnologia
    IRCCS Ospedale Policlinico San Martino)

  • Francesca Vacca

    (Istituto Italiano di Tecnologia)

  • Lorenzo Ciano

    (Istituto Italiano di Tecnologia
    University of Genova)

  • Laura Emionite

    (IRCCS Ospedale Policlinico San Martino)

  • Simonetta Astigiano

    (IRCCS Ospedale Policlinico San Martino)

  • Alessandra Romei

    (Istituto Italiano di Tecnologia)

  • Simone Horenkamp

    (Istituto Italiano di Tecnologia)

  • Ken Berglund

    (Emory University School of Medicine)

  • Robert E. Gross

    (Emory University School of Medicine)

  • Fabrizia Cesca

    (Istituto Italiano di Tecnologia
    University of Trieste)

  • Elisabetta Colombo

    (Istituto Italiano di Tecnologia
    IRCCS Ospedale Policlinico San Martino)

  • Fabio Benfenati

    (Istituto Italiano di Tecnologia
    IRCCS Ospedale Policlinico San Martino)

Abstract

Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.

Suggested Citation

  • Assunta Merolla & Caterina Michetti & Matteo Moschetta & Francesca Vacca & Lorenzo Ciano & Laura Emionite & Simonetta Astigiano & Alessandra Romei & Simone Horenkamp & Ken Berglund & Robert E. Gross &, 2024. "A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49941-3
    DOI: 10.1038/s41467-024-49941-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49941-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49941-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenta Saito & Y-F Chang & Kazuki Horikawa & Noriyuki Hatsugai & Yuriko Higuchi & Mitsuru Hashida & Yu Yoshida & Tomoki Matsuda & Yoshiyuki Arai & Takeharu Nagai, 2012. "Luminescent proteins for high-speed single-cell and whole-body imaging," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    2. Esther Krook-Magnuson & Caren Armstrong & Mikko Oijala & Ivan Soltesz, 2013. "On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Tian & Yiyu Zhang & Xinyu Li & Ying Xiong & Tianchen Wu & Hui-Wang Ai, 2022. "A luciferase prosubstrate and a red bioluminescent calcium indicator for imaging neuronal activity in mice," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. John-Sebastian Mueller & Fabio C. Tescarollo & Trong Huynh & Daniel A. Brenner & Daniel J. Valdivia & Kanyin Olagbegi & Sahana Sangappa & Spencer C. Chen & Hai Sun, 2023. "Ictogenesis proceeds through discrete phases in hippocampal CA1 seizures in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. James Okoh & Jacqunae Mays & Alexandre Bacq & Juan A. Oses-Prieto & Stefka Tyanova & Chien-Ju Chen & Khalel Imanbeyev & Marion Doladilhe & Hongyi Zhou & Paymaan Jafar-Nejad & Alma Burlingame & Jeffrey, 2023. "Targeted suppression of mTORC2 reduces seizures across models of epilepsy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Quynh-Anh Nguyen & Peter M. Klein & Cheng Xie & Katelyn N. Benthall & Jillian Iafrati & Jesslyn Homidan & Jacob T. Bendor & Barna Dudok & Jordan S. Farrell & Tilo Gschwind & Charlotte L. Porter & Anna, 2024. "Acetylcholine receptor based chemogenetics engineered for neuronal inhibition and seizure control assessed in mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wonok Kang & Chanyang Ju & Jaesoon Joo & Jiho Lee & Young-Min Shon & Sung-Min Park, 2022. "Closed-loop direct control of seizure focus in a rodent model of temporal lobe epilepsy via localized electric fields applied sequentially," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Zhao, Jinyi & Yu, Ying & Wang, Qingyun, 2022. "Dynamical regulation of epileptiform discharges caused by abnormal astrocyte function with optogenetic stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49941-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.