IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49912-8.html
   My bibliography  Save this article

HiTE: a fast and accurate dynamic boundary adjustment approach for full-length transposable element detection and annotation

Author

Listed:
  • Kang Hu

    (Central South University
    Xiangjiang Laboratory
    Central South University)

  • Peng Ni

    (Central South University
    Xiangjiang Laboratory
    Central South University)

  • Minghua Xu

    (Central South University
    Central South University)

  • You Zou

    (Central South University
    Central South University)

  • Jianye Chang

    (Chinese Academy of Agricultural Sciences)

  • Xin Gao

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

  • Yaohang Li

    (Old Dominion University)

  • Jue Ruan

    (Chinese Academy of Agricultural Sciences)

  • Bin Hu

    (Ministry of Education (Beijing Institute of Technology)
    Beijing Institute of Technology)

  • Jianxin Wang

    (Central South University
    Xiangjiang Laboratory
    Central South University)

Abstract

Recent advancements in genome assembly have greatly improved the prospects for comprehensive annotation of Transposable Elements (TEs). However, existing methods for TE annotation using genome assemblies suffer from limited accuracy and robustness, requiring extensive manual editing. In addition, the currently available gold-standard TE databases are not comprehensive, even for extensively studied species, highlighting the critical need for an automated TE detection method to supplement existing repositories. In this study, we introduce HiTE, a fast and accurate dynamic boundary adjustment approach designed to detect full-length TEs. The experimental results demonstrate that HiTE outperforms RepeatModeler2, the state-of-the-art tool, across various species. Furthermore, HiTE has identified numerous novel transposons with well-defined structures containing protein-coding domains, some of which are directly inserted within crucial genes, leading to direct alterations in gene expression. A Nextflow version of HiTE is also available, with enhanced parallelism, reproducibility, and portability.

Suggested Citation

  • Kang Hu & Peng Ni & Minghua Xu & You Zou & Jianye Chang & Xin Gao & Yaohang Li & Jue Ruan & Bin Hu & Jianxin Wang, 2024. "HiTE: a fast and accurate dynamic boundary adjustment approach for full-length transposable element detection and annotation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49912-8
    DOI: 10.1038/s41467-024-49912-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49912-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49912-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianqiang Shen & Juhong Liu & Kabin Xie & Feng Xing & Fang Xiong & Jinghua Xiao & Xianghua Li & Lizhong Xiong, 2017. "Translational repression by a miniature inverted-repeat transposable element in the 3′ untranslated region," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    2. Parithi Balachandran & Isha A. Walawalkar & Jacob I. Flores & Jacob N. Dayton & Peter A. Audano & Christine R. Beck, 2022. "Transposable element-mediated rearrangements are prevalent in human genomes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huaijun Wang & Tiantian Ye & Zilong Guo & Yilong Yao & Haifu Tu & Pengfei Wang & Yu Zhang & Yao Wang & Xiaokai Li & Bingchen Li & Haiyan Xiong & Xuelei Lai & Lizhong Xiong, 2024. "A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Marine Duhamel & Michael E. Hood & Ricardo C. Rodríguez de la Vega & Tatiana Giraud, 2023. "Dynamics of transposable element accumulation in the non-recombining regions of mating-type chromosomes in anther-smut fungi," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Shuangying Jiang & Zhouqing Luo & Jie Wu & Kang Yu & Shijun Zhao & Zelin Cai & Wenfei Yu & Hui Wang & Li Cheng & Zhenzhen Liang & Hui Gao & Marco Monti & Daniel Schindler & Linsen Huang & Cheng Zeng &, 2023. "Building a eukaryotic chromosome arm by de novo design and synthesis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Alessia Russo & Mattia Alessandrini & Moaine El Baidouri & Daniel Frei & Teresa Rosa Galise & Lara Gaidusch & Hannah F. Oertel & Sara E. Garcia Morales & Giacomo Potente & Qin Tian & Dmitry Smetanin &, 2024. "Genome of the early spider-orchid Ophrys sphegodes provides insights into sexual deception and pollinator adaptation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Wolfram Höps & Tobias Rausch & Michael Jendrusch & Jan O. Korbel & Fritz J. Sedlazeck, 2024. "Impact and characterization of serial structural variations across humans and great apes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49912-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.