IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49533-1.html
   My bibliography  Save this article

Atomic scale disorder and reconstruction in bulk infinite-layer nickelates lacking superconductivity

Author

Listed:
  • Kejun Hu

    (Institutes of Physical Science and Information Technology, Anhui University)

  • Qing Li

    (National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University)

  • Dongsheng Song

    (Institutes of Physical Science and Information Technology, Anhui University)

  • Yingze Jia

    (Institutes of Physical Science and Information Technology, Anhui University)

  • Zhiyao Liang

    (Institutes of Physical Science and Information Technology, Anhui University)

  • Shuai Wang

    (Institutes of Physical Science and Information Technology, Anhui University)

  • Haifeng Du

    (High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences)

  • Hai-Hu Wen

    (National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University)

  • Binghui Ge

    (Institutes of Physical Science and Information Technology, Anhui University)

Abstract

The recent discovery of superconductivity in infinite-layer nickelate films has sparked significant interest and expanded the realm of superconductors, in which the infinite-layer structure and proper chemical doping are both of the essence. Nonetheless, the reasons for the absence of superconductivity in bulk infinite-layer nickelates remain puzzling. Herein, we investigate atomic defects and electronic structures in bulk infinite-layer Nd0.8Sr0.2NiO2 using scanning transmission electron microscopy. Our observations reveal the presence of three-dimensional (3D) block-like structural domains resulting from intersecting defect structures, disrupting the continuity within crystal grains, which could be a crucial factor in giving rise to the insulating character and inhibiting the emergence of superconductivity. Moreover, the infinite-layer structure, without complete topotactic reduction, retains interstitial oxygen atoms on the Nd atomic plane in bulk nickelates, possibly further aggravating the local distortions of NiO2 planes and hindering the superconductivity. These findings shed light on the existence of structural and atomic defects in bulk nickelates and provide valuable insights into the influence of proper topotactic reduction and structural orders on superconductivity.

Suggested Citation

  • Kejun Hu & Qing Li & Dongsheng Song & Yingze Jia & Zhiyao Liang & Shuai Wang & Haifeng Du & Hai-Hu Wen & Binghui Ge, 2024. "Atomic scale disorder and reconstruction in bulk infinite-layer nickelates lacking superconductivity," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49533-1
    DOI: 10.1038/s41467-024-49533-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49533-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49533-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. N. Wang & M. W. Yang & Z. Yang & K. Y. Chen & H. Zhang & Q. H. Zhang & Z. H. Zhu & Y. Uwatoko & L. Gu & X. L. Dong & J. P. Sun & K. J. Jin & J.-G. Cheng, 2022. "Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xiang Ding & Charles C. Tam & Xuelei Sui & Yan Zhao & Minghui Xu & Jaewon Choi & Huaqian Leng & Ji Zhang & Mei Wu & Haiyan Xiao & Xiaotao Zu & Mirian Garcia-Fernandez & Stefano Agrestini & Xiaoqiang W, 2023. "Critical role of hydrogen for superconductivity in nickelates," Nature, Nature, vol. 615(7950), pages 50-55, March.
    3. Kyuho Lee & Bai Yang Wang & Motoki Osada & Berit H. Goodge & Tiffany C. Wang & Yonghun Lee & Shannon Harvey & Woo Jin Kim & Yijun Yu & Chaitanya Murthy & Srinivas Raghu & Lena F. Kourkoutis & Harold Y, 2023. "Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2," Nature, Nature, vol. 619(7969), pages 288-292, July.
    4. Dan Ferenc Segedin & Berit H. Goodge & Grace A. Pan & Qi Song & Harrison LaBollita & Myung-Chul Jung & Hesham El-Sherif & Spencer Doyle & Ari Turkiewicz & Nicole K. Taylor & Jarad A. Mason & Alpha T. , 2023. "Limits to the strain engineering of layered square-planar nickelate thin films," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Eric R. Hoglund & De-Liang Bao & Andrew O’Hara & Sara Makarem & Zachary T. Piontkowski & Joseph R. Matson & Ajay K. Yadav & Ryan C. Haislmaier & Roman Engel-Herbert & Jon F. Ihlefeld & Jayakanth Ravic, 2022. "Emergent interface vibrational structure of oxide superlattices," Nature, Nature, vol. 601(7894), pages 556-561, January.
    6. Hualei Sun & Mengwu Huo & Xunwu Hu & Jingyuan Li & Zengjia Liu & Yifeng Han & Lingyun Tang & Zhongquan Mao & Pengtao Yang & Bosen Wang & Jinguang Cheng & Dao-Xin Yao & Guang-Ming Zhang & Meng Wang, 2023. "Signatures of superconductivity near 80 K in a nickelate under high pressure," Nature, Nature, vol. 621(7979), pages 493-498, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Liu & Mengwu Huo & Jie Li & Qing Li & Yuecong Liu & Yaomin Dai & Xiaoxiang Zhou & Jiahao Hao & Yi Lu & Meng Wang & Hai-Hu Wen, 2024. "Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yufan Shen & Kousuke Ooe & Xueyou Yuan & Tomoaki Yamada & Shunsuke Kobayashi & Mitsutaka Haruta & Daisuke Kan & Yuichi Shimakawa, 2024. "Ferroelectric freestanding hafnia membranes with metastable rhombohedral structure down to 1-nm-thick," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xuexi Yan & Yixiao Jiang & Qianqian Jin & Tingting Yao & Weizhen Wang & Ang Tao & Chunyang Gao & Xiang Li & Chunlin Chen & Hengqiang Ye & Xiu-Liang Ma, 2023. "Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Simone Di Cataldo & Paul Worm & Jan M. Tomczak & Liang Si & Karsten Held, 2024. "Unconventional superconductivity without doping in infinite-layer nickelates under pressure," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    5. Yang Zhang & Ling-Fang Lin & Adriana Moreo & Thomas A. Maier & Elbio Dagotto, 2024. "Structural phase transition, s±-wave pairing, and magnetic stripe order in bilayered superconductor La3Ni2O7 under pressure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ruochen Shi & Qize Li & Xiaofeng Xu & Bo Han & Ruixue Zhu & Fachen Liu & Ruishi Qi & Xiaowen Zhang & Jinlong Du & Ji Chen & Dapeng Yu & Xuetao Zhu & Jiandong Guo & Peng Gao, 2024. "Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Dan Ferenc Segedin & Berit H. Goodge & Grace A. Pan & Qi Song & Harrison LaBollita & Myung-Chul Jung & Hesham El-Sherif & Spencer Doyle & Ari Turkiewicz & Nicole K. Taylor & Jarad A. Mason & Alpha T. , 2023. "Limits to the strain engineering of layered square-planar nickelate thin films," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Mahmut S. Kavrik & Jordan A. Hachtel & Wonhee Ko & Caroline Qian & Alex Abelson & Eyup B. Unlu & Harshil Kashyap & An-Ping Li & Juan C. Idrobo & Matt Law, 2022. "Emergence of distinct electronic states in epitaxially-fused PbSe quantum dot superlattices," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Jiangang Yang & Hualei Sun & Xunwu Hu & Yuyang Xie & Taimin Miao & Hailan Luo & Hao Chen & Bo Liang & Wenpei Zhu & Gexing Qu & Cui-Qun Chen & Mengwu Huo & Yaobo Huang & Shenjin Zhang & Fengfeng Zhang , 2024. "Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49533-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.