IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48941-7.html
   My bibliography  Save this article

Quantitative profiling of m6A at single base resolution across the life cycle of rice and Arabidopsis

Author

Listed:
  • Guanqun Wang

    (The University of Chicago
    The University of Chicago
    The University of Chicago
    Howard Hughes Medical Institute)

  • Haoxuan Li

    (The University of Chicago
    The University of Chicago
    The University of Chicago
    Howard Hughes Medical Institute)

  • Chang Ye

    (The University of Chicago
    The University of Chicago
    The University of Chicago
    Howard Hughes Medical Institute)

  • Kayla He

    (The University of Chicago)

  • Shun Liu

    (The University of Chicago
    The University of Chicago
    The University of Chicago
    Howard Hughes Medical Institute)

  • Bochen Jiang

    (The University of Chicago
    The University of Chicago
    The University of Chicago
    Howard Hughes Medical Institute)

  • Ruiqi Ge

    (The University of Chicago)

  • Boyang Gao

    (The University of Chicago
    The University of Chicago
    The University of Chicago
    Howard Hughes Medical Institute)

  • Jiangbo Wei

    (The University of Chicago
    National University of Singapore)

  • Yutao Zhao

    (The University of Chicago)

  • Aixuan Li

    (Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong)

  • Di Zhang

    (Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong)

  • Jianhua Zhang

    (Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong)

  • Chuan He

    (The University of Chicago
    The University of Chicago
    The University of Chicago
    Howard Hughes Medical Institute)

Abstract

N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3’ UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.

Suggested Citation

  • Guanqun Wang & Haoxuan Li & Chang Ye & Kayla He & Shun Liu & Bochen Jiang & Ruiqi Ge & Boyang Gao & Jiangbo Wei & Yutao Zhao & Aixuan Li & Di Zhang & Jianhua Zhang & Chuan He, 2024. "Quantitative profiling of m6A at single base resolution across the life cycle of rice and Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48941-7
    DOI: 10.1038/s41467-024-48941-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48941-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48941-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Yang & Robinson Triboulet & Qi Liu & Erdem Sendinc & Richard I. Gregory, 2022. "Exon junction complex shapes the m6A epitranscriptome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Guan-Zheng Luo & Alice MacQueen & Guanqun Zheng & Hongchao Duan & Louis C. Dore & Zhike Lu & Jun Liu & Kai Chen & Guifang Jia & Joy Bergelson & Chuan He, 2014. "Unique features of the m6A methylome in Arabidopsis thaliana," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    3. Dan Dominissini & Sharon Moshitch-Moshkovitz & Schraga Schwartz & Mali Salmon-Divon & Lior Ungar & Sivan Osenberg & Karen Cesarkas & Jasmine Jacob-Hirsch & Ninette Amariglio & Martin Kupiec & Rotem So, 2012. "Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq," Nature, Nature, vol. 485(7397), pages 201-206, May.
    4. Xiao Wang & Zhike Lu & Adrian Gomez & Gary C. Hon & Yanan Yue & Dali Han & Ye Fu & Marc Parisien & Qing Dai & Guifang Jia & Bing Ren & Tao Pan & Chuan He, 2014. "N6-methyladenosine-dependent regulation of messenger RNA stability," Nature, Nature, vol. 505(7481), pages 117-120, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Luo & Qilian Ma & Shan Sun & Ningning Li & Hongfeng Wang & Zheng Ying & Shengdong Ke, 2023. "Exon-intron boundary inhibits m6A deposition, enabling m6A distribution hallmark, longer mRNA half-life and flexible protein coding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Zhiyuan Luo & Jiacheng Zhang & Jingyi Fei & Shengdong Ke, 2022. "Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Sakshi Jain & Lukasz Koziej & Panagiotis Poulis & Igor Kaczmarczyk & Monika Gaik & Michal Rawski & Namit Ranjan & Sebastian Glatt & Marina V. Rodnina, 2023. "Modulation of translational decoding by m6A modification of mRNA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Guoqiang Zhang & Yongru Xu & Xiaona Wang & Yuanxiang Zhu & Liangliang Wang & Wenxin Zhang & Yiru Wang & Yajie Gao & Xuna Wu & Ying Cheng & Qinmiao Sun & Dahua Chen, 2022. "Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. P Acera Mateos & A J Sethi & A Ravindran & A Srivastava & K Woodward & S Mahmud & M Kanchi & M Guarnacci & J Xu & Z W S Yuen & Y Zhou & A Sneddon & W Hamilton & J Gao & L M Starrs & R Hayashi & V Wick, 2024. "Prediction of m6A and m5C at single-molecule resolution reveals a transcriptome-wide co-occurrence of RNA modifications," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Man Zhang & Yunping Zeng & Rong Peng & Jie Dong & Yelin Lan & Sujuan Duan & Zhenyi Chang & Jian Ren & Guanzheng Luo & Bing Liu & Kamil Růžička & Kewei Zhao & Hong-Bin Wang & Hong-Lei Jin, 2022. "N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Belinda Baquero-Pérez & Ivaylo D. Yonchev & Anna Delgado-Tejedor & Rebeca Medina & Mireia Puig-Torrents & Ian Sudbery & Oguzhan Begik & Stuart A. Wilson & Eva Maria Novoa & Juana Díez, 2024. "N6-methyladenosine modification is not a general trait of viral RNA genomes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. You Wu & Wenna Shao & Mengxiao Yan & Yuqin Wang & Pengfei Xu & Guoqiang Huang & Xiaofei Li & Brian D. Gregory & Jun Yang & Hongxia Wang & Xiang Yu, 2024. "Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Song-Yao Zhang & Shao-Wu Zhang & Lian Liu & Jia Meng & Yufei Huang, 2016. "m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    10. Hyun Jung Hwang & Tae Lim Park & Hyeong-In Kim & Yeonkyoung Park & Geunhee Kim & Chiyeol Song & Won-Ki Cho & Yoon Ki Kim, 2023. "YTHDF2 facilitates aggresome formation via UPF1 in an m6A-independent manner," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Moshe Shay Ben-Haim & Yishay Pinto & Sharon Moshitch-Moshkovitz & Vera Hershkovitz & Nitzan Kol & Tammy Diamant-Levi & Michal Schnaider Beeri & Ninette Amariglio & Haim Y. Cohen & Gideon Rechavi, 2021. "Dynamic regulation of N6,2′-O-dimethyladenosine (m6Am) in obesity," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Xin Yang & Robinson Triboulet & Qi Liu & Erdem Sendinc & Richard I. Gregory, 2022. "Exon junction complex shapes the m6A epitranscriptome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Yuanpei Li & Xiaoniu He & Xiao Lu & Zhicheng Gong & Qing Li & Lei Zhang & Ronghui Yang & Chengyi Wu & Jialiang Huang & Jiancheng Ding & Yaohui He & Wen Liu & Ceshi Chen & Bin Cao & Dawang Zhou & Yufen, 2022. "METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    14. Shu Liu & Jianbo Xiu & Caiyun Zhu & Kexin Meng & Chen Li & Rongrong Han & Tingfu Du & Lanlan Li & Lingdan Xu & Renjie Liu & Wanwan Zhu & Yan Shen & Qi Xu, 2021. "Fat mass and obesity-associated protein regulates RNA methylation associated with depression-like behavior in mice," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Zhen-Dong Zhong & Ying-Yuan Xie & Hong-Xuan Chen & Ye-Lin Lan & Xue-Hong Liu & Jing-Yun Ji & Fu Wu & Lingmei Jin & Jiekai Chen & Daniel W. Mak & Zhang Zhang & Guan-Zheng Luo, 2023. "Systematic comparison of tools used for m6A mapping from nanopore direct RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Shujie Chen, & Lu Zhang & Mengjie Li & Ying Zhang & Meng Sun & Lingfang Wang & Jiebo Lin & Yun Cui & Qian Chen & Chenqi Jin & Xiang Li & Boya Wang & Hao Chen & Tianhua Zhou & Liangjing Wang & Chih-Hun, 2022. "Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Fernando Rodriguez & Irina A. Yushenova & Daniel DiCorpo & Irina R. Arkhipova, 2022. "Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Xiao Han & Lijuan Liu & Saihua Huang & Wenfeng Xiao & Yajing Gao & Weitao Zhou & Caiyan Zhang & Hongmei Zheng & Lan Yang & Xueru Xie & Qiuyan Liang & Zikun Tu & Hongmiao Yu & Jinrong Fu & Libo Wang & , 2023. "RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    19. Bin Li & Wen Xi & Ying Bai & Xue Liu & Yuan Zhang & Lu Li & Liang Bian & Chenchen Liu & Ying Tang & Ling Shen & Li Yang & Xiaochun Gu & Jian Xie & Zhongqiu Zhou & Yu Wang & Xiaoyu Yu & Jianhong Wang &, 2023. "FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Hyun Jung Hwang & Hongseok Ha & Ban Seok Lee & Bong Heon Kim & Hyun Kyu Song & Yoon Ki Kim, 2022. "LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48941-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.