IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18807-9.html
   My bibliography  Save this article

TssA–TssM–TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae

Author

Listed:
  • Maria Silvina Stietz

    (University of Calgary)

  • Xiaoye Liang

    (University of Calgary
    Shanghai Jiao Tong University)

  • Hao Li

    (Shanghai Jiao Tong University)

  • Xinran Zhang

    (University of Calgary)

  • Tao G. Dong

    (University of Calgary
    Shanghai Jiao Tong University)

Abstract

The type VI protein secretion system (T6SS) is a powerful needle-like machinery found in Gram-negative bacteria that can penetrate the cytosol of receiving cells in milliseconds by physical force. Anchored by its membrane-spanning complex (MC) and a baseplate (BP), the T6SS sheath-tube is assembled in a stepwise process primed by TssA and terminated by TagA. However, the molecular details of its assembly remain elusive. Here, we systematically examined the initiation and termination of contractile and non-contractile T6SS sheaths in MC-BP, tssA and tagA mutants by fluorescence microscopy. We observe long pole-to-pole sheath-tube structures in the non-contractile MC-BP defective mutants but not in the Hcp tube or VgrG spike mutants. Combining overexpression and genetic mutation data, we demonstrate complex effects of TssM, TssA and TagA interactions on T6SS sheath-tube dynamics. We also report promiscuous interactions of TagA with multiple T6SS components, similar to TssA. Our results demonstrate that priming of the T6SS sheath-tube assembly is not dependent on TssA, nor is the assembly termination dependent on the distal end TssA–TagA interaction, and highlight the tripartite control of TssA–TssM–TagA on sheath-tube initiation and termination.

Suggested Citation

  • Maria Silvina Stietz & Xiaoye Liang & Hao Li & Xinran Zhang & Tao G. Dong, 2020. "TssA–TssM–TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18807-9
    DOI: 10.1038/s41467-020-18807-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18807-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18807-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selina Fecht & Patricia Paracuellos & Sujatha Subramoni & Casandra Ai Zhu Tan & Aravindan Ilangovan & Tiago R. D. Costa & Alain Filloux, 2024. "Functionality of chimeric TssA proteins in the type VI secretion system reveals sheath docking specificity within their N-terminal domains," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18807-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.