IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48474-z.html
   My bibliography  Save this article

Elevated Na is a dynamic and reversible modulator of mitochondrial metabolism in the heart

Author

Listed:
  • Yu Jin Chung

    (King’s College)

  • Zoe Hoare

    (King’s College)

  • Friedrich Baark

    (King’s College London)

  • Chak Shun Yu

    (University of Cambridge)

  • Jia Guo

    (University Medical Centre)

  • William Fuller

    (University of Glasgow)

  • Richard Southworth

    (King’s College London)

  • Doerthe M. Katschinski

    (University Medical Centre)

  • Michael P. Murphy

    (University of Cambridge)

  • Thomas R. Eykyn

    (King’s College London)

  • Michael J. Shattock

    (King’s College)

Abstract

Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb’s free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.

Suggested Citation

  • Yu Jin Chung & Zoe Hoare & Friedrich Baark & Chak Shun Yu & Jia Guo & William Fuller & Richard Southworth & Doerthe M. Katschinski & Michael P. Murphy & Thomas R. Eykyn & Michael J. Shattock, 2024. "Elevated Na is a dynamic and reversible modulator of mitochondrial metabolism in the heart," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48474-z
    DOI: 10.1038/s41467-024-48474-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48474-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48474-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dunja Aksentijević & Anja Karlstaedt & Marina V. Basalay & Brett A. O’Brien & David Sanchez-Tatay & Seda Eminaga & Alpesh Thakker & Daniel A. Tennant & William Fuller & Thomas R. Eykyn & Heinrich Taeg, 2020. "Intracellular sodium elevation reprograms cardiac metabolism," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Edward T. Chouchani & Victoria R. Pell & Edoardo Gaude & Dunja Aksentijević & Stephanie Y. Sundier & Ellen L. Robb & Angela Logan & Sergiy M. Nadtochiy & Emily N. J. Ord & Anthony C. Smith & Filmon Ey, 2014. "Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS," Nature, Nature, vol. 515(7527), pages 431-435, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris G. Faulkes & Thomas R. Eykyn & Jan Lj. Miljkovic & James D. Gilbert & Rebecca L. Charles & Hiran A. Prag & Nikayla Patel & Daniel W. Hart & Michael P. Murphy & Nigel C. Bennett & Dunja Aksentije, 2024. "Naked mole-rats have distinctive cardiometabolic and genetic adaptations to their underground low-oxygen lifestyles," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Maithily S. Nanadikar & Ana M. Vergel Leon & Jia Guo & Gijsbert J. Belle & Aline Jatho & Elvina S. Philip & Astrid F. Brandner & Rainer A. Böckmann & Runzhu Shi & Anke Zieseniss & Carla M. Siemssen & , 2023. "IDH3γ functions as a redox switch regulating mitochondrial energy metabolism and contractility in the heart," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Joy Edwards-Hicks & Huizhong Su & Maurizio Mangolini & Kubra K. Yoneten & Jimi Wills & Giovanny Rodriguez-Blanco & Christine Young & Kevin Cho & Heather Barker & Morwenna Muir & Ania Naila Guerrieri &, 2022. "MYC sensitises cells to apoptosis by driving energetic demand," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Jiayi Wang & Mengke Zhao & Meina Wang & Dong Fu & Lin Kang & Yu Xu & Liming Shen & Shilin Jin & Liang Wang & Jing Liu, 2024. "Human neural stem cell-derived artificial organelles to improve oxidative phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    5. Xiaoduo Tang & Jingyan Ren & Xin Wei & Tao Wang & Haiqiu Li & Yihan Sun & Yang Liu & Mingli Chi & Shoujun Zhu & Laijin Lu & Junhu Zhang & Bai Yang, 2023. "Exploiting synergistic effect of CO/NO gases for soft tissue transplantation using a hydrogel patch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Masataka Kawamura & Catherine Parmentier & Samrat Ray & Sergi Clotet-Freixas & Sharon Leung & Rohan John & Laura Mazilescu & Emmanuel Nogueira & Yuki Noguchi & Toru Goto & Bhranavi Arulratnam & Sujani, 2024. "Normothermic ex vivo kidney perfusion preserves mitochondrial and graft function after warm ischemia and is further enhanced by AP39," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Xueqiang Wang & Xing Zhang & Ke Cao & Mengqi Zeng & Xuyang Fu & Adi Zheng & Feng Zhang & Feng Gao & Xuan Zou & Hao Li & Min Li & Weiqiang Lv & Jie Xu & Jiangang Long & Weijin Zang & Jinghai Chen & Fen, 2022. "Cardiac disruption of SDHAF4-mediated mitochondrial complex II assembly promotes dilated cardiomyopathy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Lianghui Cheng & Zhiyong Zhuang & Mingming Yin & Yuan Lu & Sujuan Liu & Minle Zhan & Liyuan Zhao & Zhenyan He & Fanling Meng & Sidan Tian & Liang Luo, 2024. "A microenvironment-modulating dressing with proliferative degradants for the healing of diabetic wounds," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Pankaj Sharma & Elena Maklashina & Markus Voehler & Sona Balintova & Sarka Dvorakova & Michal Kraus & Katerina Hadrava Vanova & Zuzana Nahacka & Renata Zobalova & Stepana Boukalova & Kristyna Cunatova, 2024. "Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. John O. Onukwufor & M. Arsalan Farooqi & Anežka Vodičková & Shon A. Koren & Aksana Baldzizhar & Brandon J. Berry & Gisela Beutner & George A. Porter & Vsevolod Belousov & Alan Grossfield & Andrew P. W, 2022. "A reversible mitochondrial complex I thiol switch mediates hypoxic avoidance behavior in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Thomas Agius & Raffaella Emsley & Arnaud Lyon & Michael R. MacArthur & Kevin Kiesworo & Anna Faivre & Louis Stavart & Martine Lambelet & David Legouis & Sophie Seigneux & Déla Golshayan & Francois Laz, 2024. "Short-term hypercaloric carbohydrate loading increases surgical stress resilience by inducing FGF21," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48474-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.