IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48434-7.html
   My bibliography  Save this article

DeepDive: estimating global biodiversity patterns through time using deep learning

Author

Listed:
  • Rebecca B. Cooper

    (University of Fribourg
    Swiss Institute of Bioinformatics)

  • Joseph T. Flannery-Sutherland

    (University of Birmingham)

  • Daniele Silvestro

    (University of Fribourg
    Swiss Institute of Bioinformatics
    University of Gothenburg)

Abstract

Understanding how biodiversity has changed through time is a central goal of evolutionary biology. However, estimates of past biodiversity are challenged by the inherent incompleteness of the fossil record, even when state-of-the-art statistical methods are applied to adjust estimates while correcting for sampling biases. Here we develop an approach based on stochastic simulations of biodiversity and a deep learning model to infer richness at global or regional scales through time while incorporating spatial, temporal and taxonomic sampling variation. Our method outperforms alternative approaches across simulated datasets, especially at large spatial scales, providing robust palaeodiversity estimates under a wide range of preservation scenarios. We apply our method on two empirical datasets of different taxonomic and temporal scope: the Permian-Triassic record of marine animals and the Cenozoic evolution of proboscideans. Our estimates provide a revised quantitative assessment of two mass extinctions in the marine record and reveal rapid diversification of proboscideans following their expansion out of Africa and a >70% diversity drop in the Pleistocene.

Suggested Citation

  • Rebecca B. Cooper & Joseph T. Flannery-Sutherland & Daniele Silvestro, 2024. "DeepDive: estimating global biodiversity patterns through time using deep learning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48434-7
    DOI: 10.1038/s41467-024-48434-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48434-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48434-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph T. Flannery-Sutherland & Daniele Silvestro & Michael J. Benton, 2022. "Global diversity dynamics in the fossil record are regionally heterogeneous," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Tobias Andermann & Caroline A. E. Strömberg & Alexandre Antonelli & Daniele Silvestro, 2022. "The origin and evolution of open habitats in North America inferred by Bayesian deep learning models," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Daril A. Vilhena & Alexandre Antonelli, 2015. "A network approach for identifying and delimiting biogeographical regions," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    4. Jennifer F. Hoyal Cuthill & Nicholas Guttenberg & Graham E. Budd, 2020. "Impacts of speciation and extinction measured by an evolutionary decay clock," Nature, Nature, vol. 588(7839), pages 636-641, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corentin Jouault & André Nel & Vincent Perrichot & Frédéric Legendre & Fabien L. Condamine, 2022. "Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Daniel J McGarvey & Joseph A Veech, 2018. "Modular structure in fish co-occurrence networks: A comparison across spatial scales and grouping methodologies," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-20, December.
    3. Runxi Wang & Jamie M. Kass & Chhaya Chaudhary & Evan P. Economo & Benoit Guénard, 2024. "Global biogeographic regions for ants have complex relationships with those for plants and tetrapods," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Miho Kamei & Alessio Mastrucci & Bas J. van Ruijven, 2021. "A Future Outlook of Narratives for the Built Environment in Japan," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    5. Cassiano A F R Gatto & Mario Cohn-Haft, 2021. "Spatial Congruence Analysis (SCAN): A method for detecting biogeographical patterns based on species range congruences," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
    6. Zhen Guo & Joseph T. Flannery-Sutherland & Michael J. Benton & Zhong-Qiang Chen, 2023. "Bayesian analyses indicate bivalves did not drive the downfall of brachiopods following the Permian-Triassic mass extinction," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Joseph T. Flannery-Sutherland & Cameron D. Crossan & Corinne E. Myers & Austin J. W. Hendy & Neil H. Landman & James D. Witts, 2024. "Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48434-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.