IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48365-3.html
   My bibliography  Save this article

The structural basis for 2′−5′/3′−5′-cGAMP synthesis by cGAS

Author

Listed:
  • Shuai Wu

    (Johns Hopkins University School of Medicine)

  • Sandra B. Gabelli

    (Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine
    Merck Laboratories)

  • Jungsan Sohn

    (Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

Abstract

cGAS activates innate immune responses against cytosolic double-stranded DNA. Here, by determining crystal structures of cGAS at various reaction stages, we report a unifying catalytic mechanism. apo-cGAS assumes an array of inactive conformations and binds NTPs nonproductively. Dimerization-coupled double-stranded DNA-binding then affixes the active site into a rigid lock for productive metal•substrate binding. A web-like network of protein•NTP, intra-NTP, and inter-NTP interactions ensures the stepwise synthesis of 2′−5′/3′−5′-linked cGAMP while discriminating against noncognate NTPs and off-pathway intermediates. One divalent metal is sufficient for productive substrate binding, and capturing the second divalent metal is tightly coupled to nucleotide and linkage specificities, a process which manganese is preferred over magnesium by 100-fold. Additionally, we elucidate how mouse cGAS achieves more stringent NTP and linkage specificities than human cGAS. Together, our results reveal that an adaptable, yet precise lock-and-key-like mechanism underpins cGAS catalysis.

Suggested Citation

  • Shuai Wu & Sandra B. Gabelli & Jungsan Sohn, 2024. "The structural basis for 2′−5′/3′−5′-cGAMP synthesis by cGAS," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48365-3
    DOI: 10.1038/s41467-024-48365-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48365-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48365-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreas Holleufer & Kasper Grønbjerg Winther & Hans Henrik Gad & Xianlong Ai & Yuqiang Chen & Lihua Li & Ziming Wei & Huimin Deng & Jiyong Liu & Ninna Ahlmann Frederiksen & Bine Simonsen & Line Lykke , 2021. "Two cGAS-like receptors induce antiviral immunity in Drosophila," Nature, Nature, vol. 597(7874), pages 114-118, September.
    2. Jessica Vincent & Carolina Adura & Pu Gao & Antonio Luz & Lodoe Lama & Yasutomi Asano & Rei Okamoto & Toshihiro Imaeda & Jumpei Aida & Katherine Rothamel & Tasos Gogakos & Joshua Steinberg & Seth Reas, 2017. "Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    3. Jessica Vincent & Carolina Adura & Pu Gao & Antonio Luz & Lodoe Lama & Yasutomi Asano & Rei Okamoto & Toshihiro Imaeda & Jumpei Aida & Katherine Rothamel & Tasos Gogakos & Joshua Steinberg & Seth Reas, 2017. "Publisher Correction: Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    4. Liudmila Andreeva & Björn Hiller & Dirk Kostrewa & Charlotte Lässig & Carina C. de Oliveira Mann & David Jan Drexler & Andreas Maiser & Moritz Gaidt & Heinrich Leonhardt & Veit Hornung & Karl-Peter Ho, 2017. "cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders," Nature, Nature, vol. 549(7672), pages 394-398, September.
    5. Filiz Civril & Tobias Deimling & Carina C. de Oliveira Mann & Andrea Ablasser & Manuela Moldt & Gregor Witte & Veit Hornung & Karl-Peter Hopfner, 2013. "Structural mechanism of cytosolic DNA sensing by cGAS," Nature, Nature, vol. 498(7454), pages 332-337, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Irazoki & Isabel Gordaliza-Alaguero & Emma Frank & Nikolaos Nikiforos Giakoumakis & Jordi Seco & Manuel Palacín & Anna Gumà & Lykke Sylow & David Sebastián & Antonio Zorzano, 2023. "Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Tian-Chen Xiong & Ming-Cong Wei & Fang-Xu Li & Miao Shi & Hu Gan & Zhen Tang & Hong-Peng Dong & Tianzi Liuyu & Pu Gao & Bo Zhong & Zhi-Dong Zhang & Dandan Lin, 2022. "The E3 ubiquitin ligase ARIH1 promotes antiviral immunity and autoimmunity by inducing mono-ISGylation and oligomerization of cGAS," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Hervé Técher & Diyavarshini Gopaul & Jonathan Heuzé & Nail Bouzalmad & Baptiste Leray & Audrey Vernet & Clément Mettling & Jérôme Moreaux & Philippe Pasero & Yea-Lih Lin, 2024. "MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Shirin Fatma & Arpita Chakravarti & Xuankun Zeng & Raven H. Huang, 2021. "Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Kaiyuan Wang & Yang Li & Xia Wang & Zhijun Zhang & Liping Cao & Xiaoyuan Fan & Bin Wan & Fengxiang Liu & Xuanbo Zhang & Zhonggui He & Yingtang Zhou & Dong Wang & Jin Sun & Xiaoyuan Chen, 2023. "Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Lina Wang & Siru Li & Kai Wang & Na Wang & Qiaoling Liu & Zhen Sun & Li Wang & Lulu Wang & Quentin Liu & Chengli Song & Caigang Liu & Qingkai Yang, 2022. "DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. M. J. Gutbrod & B. Roche & J. I. Steinberg & A. A. Lakhani & K. Chang & A. J. Schorn & R. A. Martienssen, 2022. "Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Xintao Tu & Ting-Ting Chu & Devon Jeltema & Kennady Abbott & Kun Yang & Cong Xing & Jie Han & Nicole Dobbs & Nan Yan, 2022. "Interruption of post-Golgi STING trafficking activates tonic interferon signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Xiaoquan Wang & Youqiao Wang & Anqi Cao & Qinhong Luo & Daoyuan Chen & Weiqi Zhao & Jun Xu & Qinkai Li & Xianzhang Bu & Junmin Quan, 2023. "Development of cyclopeptide inhibitors of cGAS targeting protein-DNA interaction and phase separation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Bert I. Crawford & Mary Jo Talley & Joshua Russman & James Riddle & Sabrina Torres & Troy Williams & Michelle S. Longworth, 2024. "Condensin-mediated restriction of retrotransposable elements facilitates brain development in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48365-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.