IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00833-9.html
   My bibliography  Save this article

Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice

Author

Listed:
  • Jessica Vincent

    (Vanderbilt University School of Medicine)

  • Carolina Adura

    (The Rockefeller University)

  • Pu Gao

    (Memorial Sloan-Kettering Cancer Center
    Chinese Academy of Sciences)

  • Antonio Luz

    (The Rockefeller University
    Regeneron Pharmaceuticals Incorporated)

  • Lodoe Lama

    (The Rockefeller University
    Howard Hughes Medical Institute Laboratory for RNA Molecular Biology)

  • Yasutomi Asano

    (Tri-Institutional Therapeutics Discovery Institute)

  • Rei Okamoto

    (Tri-Institutional Therapeutics Discovery Institute)

  • Toshihiro Imaeda

    (Tri-Institutional Therapeutics Discovery Institute)

  • Jumpei Aida

    (Tri-Institutional Therapeutics Discovery Institute)

  • Katherine Rothamel

    (Vanderbilt University School of Medicine)

  • Tasos Gogakos

    (The Rockefeller University
    Howard Hughes Medical Institute Laboratory for RNA Molecular Biology)

  • Joshua Steinberg

    (The Rockefeller University
    Howard Hughes Medical Institute Laboratory for RNA Molecular Biology)

  • Seth Reasoner

    (Vanderbilt University School of Medicine)

  • Kazuyoshi Aso

    (Tri-Institutional Therapeutics Discovery Institute)

  • Thomas Tuschl

    (The Rockefeller University
    Howard Hughes Medical Institute Laboratory for RNA Molecular Biology)

  • Dinshaw J. Patel

    (Memorial Sloan-Kettering Cancer Center)

  • J. Fraser Glickman

    (The Rockefeller University)

  • Manuel Ascano

    (Vanderbilt University School of Medicine)

Abstract

Cyclic GMP-AMP synthase is essential for innate immunity against infection and cellular damage, serving as a sensor of DNA from pathogens or mislocalized self-DNA. Upon binding double-stranded DNA, cyclic GMP-AMP synthase synthesizes a cyclic dinucleotide that initiates an inflammatory cellular response. Mouse studies that recapitulate causative mutations in the autoimmune disease Aicardi-Goutières syndrome demonstrate that ablating the cyclic GMP-AMP synthase gene abolishes the deleterious phenotype. Here, we report the discovery of a class of cyclic GMP-AMP synthase inhibitors identified by a high-throughput screen. These compounds possess defined structure-activity relationships and we present crystal structures of cyclic GMP-AMP synthase, double-stranded DNA, and inhibitors within the enzymatic active site. We find that a chemically improved member, RU.521, is active and selective in cellular assays of cyclic GMP-AMP synthase-mediated signaling and reduces constitutive expression of interferon in macrophages from a mouse model of Aicardi-Goutières syndrome. RU.521 will be useful toward understanding the biological roles of cyclic GMP-AMP synthase and can serve as a molecular scaffold for development of future autoimmune therapies.

Suggested Citation

  • Jessica Vincent & Carolina Adura & Pu Gao & Antonio Luz & Lodoe Lama & Yasutomi Asano & Rei Okamoto & Toshihiro Imaeda & Jumpei Aida & Katherine Rothamel & Tasos Gogakos & Joshua Steinberg & Seth Reas, 2017. "Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00833-9
    DOI: 10.1038/s41467-017-00833-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00833-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00833-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Irazoki & Isabel Gordaliza-Alaguero & Emma Frank & Nikolaos Nikiforos Giakoumakis & Jordi Seco & Manuel Palacín & Anna Gumà & Lykke Sylow & David Sebastián & Antonio Zorzano, 2023. "Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Shuai Wu & Sandra B. Gabelli & Jungsan Sohn, 2024. "The structural basis for 2′−5′/3′−5′-cGAMP synthesis by cGAS," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Hervé Técher & Diyavarshini Gopaul & Jonathan Heuzé & Nail Bouzalmad & Baptiste Leray & Audrey Vernet & Clément Mettling & Jérôme Moreaux & Philippe Pasero & Yea-Lih Lin, 2024. "MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Kaiyuan Wang & Yang Li & Xia Wang & Zhijun Zhang & Liping Cao & Xiaoyuan Fan & Bin Wan & Fengxiang Liu & Xuanbo Zhang & Zhonggui He & Yingtang Zhou & Dong Wang & Jin Sun & Xiaoyuan Chen, 2023. "Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. M. J. Gutbrod & B. Roche & J. I. Steinberg & A. A. Lakhani & K. Chang & A. J. Schorn & R. A. Martienssen, 2022. "Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00833-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.