IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48122-6.html
   My bibliography  Save this article

Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO2−x catalyst

Author

Listed:
  • Hui Wang

    (Beijing University of Chemical Technology)

  • Guoqing Cui

    (China University of Petroleum (Beijing))

  • Hao Lu

    (Beijing University of Chemical Technology)

  • Zeyang Li

    (Beijing University of Chemical Technology)

  • Lei Wang

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Hao Meng

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Jiong Li

    (Chinese Academy of Sciences)

  • Hong Yan

    (Beijing University of Chemical Technology)

  • Yusen Yang

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Min Wei

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

Abstract

The dry reforming of methane provides an attractive route to convert greenhouse gases (CH4 and CO2) into valuable syngas, so as to resolve the carbon cycle and environmental issues. However, the development of high-performance catalysts remains a huge challenge. Herein, we report a 0.6% Ir/CeO2−x catalyst with a metal-support interface structure which exhibits high CH4 (~72%) and CO2 (~82%) conversion and a CH4 reaction rate of ~973 μmolCH4 gcat−1 s−1 which is stable over 100 h at 700 °C. The performance of the catalyst is close to the state-of-the-art in this area of research. A combination of in situ spectroscopic characterization and theoretical calculations highlight the importance of the interfacial structure as an intrinsic active center to facilitate the CH4 dissociation (the rate-determining step) and the CH2* oxidation to CH2O* without coke formation, which accounts for the long-term stability. The catalyst in this work has a potential application prospect in the field of high-value utilization of carbon resources.

Suggested Citation

  • Hui Wang & Guoqing Cui & Hao Lu & Zeyang Li & Lei Wang & Hao Meng & Jiong Li & Hong Yan & Yusen Yang & Min Wei, 2024. "Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO2−x catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48122-6
    DOI: 10.1038/s41467-024-48122-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48122-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48122-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Congyi Wu & Lili Lin & Jinjia Liu & Jingpeng Zhang & Feng Zhang & Tong Zhou & Ning Rui & Siyu Yao & Yuchen Deng & Feng Yang & Wenqian Xu & Jun Luo & Yue Zhao & Binhang Yan & Xiao-Dong Wen & José A. Ro, 2020. "Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Xiaodong Li & Yongfu Sun & Jiaqi Xu & Yanjie Shao & Ju Wu & Xiaoliang Xu & Yang Pan & Huanxin Ju & Junfa Zhu & Yi Xie, 2019. "Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers," Nature Energy, Nature, vol. 4(8), pages 690-699, August.
    3. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Alexandra Tavasoli & Abdelaziz Gouda & Till Zähringer & Young Feng Li & Humayra Quaid & Camilo J. Viasus Perez & Rui Song & Mohini Sain & Geoffrey Ozin, 2023. "Author Correction: Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    5. Alexandra Tavasoli & Abdelaziz Gouda & Till Zähringer & Young Feng Li & Humayra Quaid & Camilo J. Viasus Perez & Rui Song & Mohini Sain & Geoffrey Ozin, 2023. "Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Mohcin Akri & Shu Zhao & Xiaoyu Li & Ketao Zang & Adam F. Lee & Mark A. Isaacs & Wei Xi & Yuvaraj Gangarajula & Jun Luo & Yujing Ren & Yi-Tao Cui & Lei Li & Yang Su & Xiaoli Pan & Wu Wen & Yang Pan & , 2019. "Atomically dispersed nickel as coke-resistant active sites for methane dry reforming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Wanxi & Chuong Nguyen, Thi Hong & Nguyen, Dang Le Tri & Wang, Ting & Van Thi Tran, Thi & Le, Trung Hieu & Le, Hai Khoa & Grace, Andrews Nirmala & Singh, Pardeep & Raizadaa, Pankaj & Nguyen Dinh,, 2021. "A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Yixuan Wang & Yang Liu & Lingling Wang & Silambarasan Perumal & Hongdan Wang & Hyun Ko & Chung-Li Dong & Panpan Zhang & Shuaijun Wang & Ta Thi Thuy Nga & Young Dok Kim & Yujing Ji & Shufang Zhao & Ji-, 2024. "Coupling photocatalytic CO2 reduction and CH3OH oxidation for selective dimethoxymethane production," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yuan-Sheng Xia & Meizhong Tang & Lei Zhang & Jiang Liu & Cheng Jiang & Guang-Kuo Gao & Long-Zhang Dong & Lan-Gui Xie & Ya-Qian Lan, 2022. "Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Thaylan Pinheiro Araújo & Georgios Giannakakis & Jordi Morales-Vidal & Mikhail Agrachev & Zaira Ruiz-Bernal & Phil Preikschas & Tangsheng Zou & Frank Krumeich & Patrik O. Willi & Wendelin J. Stark & R, 2024. "Low-nuclearity CuZn ensembles on ZnZrOx catalyze methanol synthesis from CO2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Yuqi Ren & Yiwei Fu & Naixu Li & Changjun You & Jie Huang & Kai Huang & Zhenkun Sun & Jiancheng Zhou & Yitao Si & Yuanhao Zhu & Wenshuai Chen & Lunbo Duan & Maochang Liu, 2024. "Concentrated solar CO2 reduction in H2O vapour with >1% energy conversion efficiency," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yilong Zhao & Yunxuan Ding & Wenlong Li & Chang Liu & Yingzheng Li & Ziqi Zhao & Yu Shan & Fei Li & Licheng Sun & Fusheng Li, 2023. "Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Yang Liu & Jianhui Sun & Houhou Huang & Linlu Bai & Xiaomeng Zhao & Binhong Qu & Lunqiao Xiong & Fuquan Bai & Junwang Tang & Liqiang Jing, 2023. "Improving CO2 photoconversion with ionic liquid and Co single atoms," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Li, Sen & Guo, Longhui & He, Xinyu & Qiao, Congzhen & Tian, Yajie, 2022. "Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics," Renewable Energy, Elsevier, vol. 194(C), pages 89-99.
    12. Yue Li & Xingwu Liu & Tong Wu & Xiangzhou Zhang & Hecheng Han & Xiaoyu Liu & Yuke Chen & Zhenfei Tang & Zhen Liu & Yuhai Zhang & Hong Liu & Lili Zhao & Ding Ma & Weijia Zhou, 2024. "Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Hui Li & Caikun Cheng & Zhijie Yang & Jingjing Wei, 2022. "Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Yao Chai & Yuehua Kong & Min Lin & Wei Lin & Jinni Shen & Jinlin Long & Rusheng Yuan & Wenxin Dai & Xuxu Wang & Zizhong Zhang, 2023. "Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Mohammad Qorbani & Amr Sabbah & Ying-Ren Lai & Septia Kholimatussadiah & Shaham Quadir & Chih-Yang Huang & Indrajit Shown & Yi-Fan Huang & Michitoshi Hayashi & Kuei-Hsien Chen & Li-Chyong Chen, 2022. "Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Zelun Zhao & Guang Gao & Yongjie Xi & Jia Wang & Peng Sun & Qi Liu & Chengyang Li & Zhiwei Huang & Fuwei Li, 2024. "Inverse ceria-nickel catalyst for enhanced C–O bond hydrogenolysis of biomass and polyether," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Jiaqi Yu & Tien Le & Dapeng Jing & Eli Stavitski & Nicholas Hunter & Kanika Lalit & Denis Leshchev & Daniel E. Resasco & Edward H. Sargent & Bin Wang & Wenyu Huang, 2023. "Balancing elementary steps enables coke-free dry reforming of methane," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Yanbiao Shi & Jie Li & Chengliang Mao & Song Liu & Xiaobing Wang & Xiufan Liu & Shengxi Zhao & Xiao Liu & Yanqiang Huang & Lizhi Zhang, 2021. "Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48122-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.