IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48122-6.html
   My bibliography  Save this article

Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO2−x catalyst

Author

Listed:
  • Hui Wang

    (Beijing University of Chemical Technology)

  • Guoqing Cui

    (China University of Petroleum (Beijing))

  • Hao Lu

    (Beijing University of Chemical Technology)

  • Zeyang Li

    (Beijing University of Chemical Technology)

  • Lei Wang

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Hao Meng

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Jiong Li

    (Chinese Academy of Sciences)

  • Hong Yan

    (Beijing University of Chemical Technology)

  • Yusen Yang

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

  • Min Wei

    (Beijing University of Chemical Technology
    Quzhou Institute for Innovation in Resource Chemical Engineering)

Abstract

The dry reforming of methane provides an attractive route to convert greenhouse gases (CH4 and CO2) into valuable syngas, so as to resolve the carbon cycle and environmental issues. However, the development of high-performance catalysts remains a huge challenge. Herein, we report a 0.6% Ir/CeO2−x catalyst with a metal-support interface structure which exhibits high CH4 (~72%) and CO2 (~82%) conversion and a CH4 reaction rate of ~973 μmolCH4 gcat−1 s−1 which is stable over 100 h at 700 °C. The performance of the catalyst is close to the state-of-the-art in this area of research. A combination of in situ spectroscopic characterization and theoretical calculations highlight the importance of the interfacial structure as an intrinsic active center to facilitate the CH4 dissociation (the rate-determining step) and the CH2* oxidation to CH2O* without coke formation, which accounts for the long-term stability. The catalyst in this work has a potential application prospect in the field of high-value utilization of carbon resources.

Suggested Citation

  • Hui Wang & Guoqing Cui & Hao Lu & Zeyang Li & Lei Wang & Hao Meng & Jiong Li & Hong Yan & Yusen Yang & Min Wei, 2024. "Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO2−x catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48122-6
    DOI: 10.1038/s41467-024-48122-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48122-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48122-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaodong Li & Yongfu Sun & Jiaqi Xu & Yanjie Shao & Ju Wu & Xiaoliang Xu & Yang Pan & Huanxin Ju & Junfa Zhu & Yi Xie, 2019. "Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers," Nature Energy, Nature, vol. 4(8), pages 690-699, August.
    2. Mohcin Akri & Shu Zhao & Xiaoyu Li & Ketao Zang & Adam F. Lee & Mark A. Isaacs & Wei Xi & Yuvaraj Gangarajula & Jun Luo & Yujing Ren & Yi-Tao Cui & Lei Li & Yang Su & Xiaoli Pan & Wu Wen & Yang Pan & , 2019. "Atomically dispersed nickel as coke-resistant active sites for methane dry reforming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Alexandra Tavasoli & Abdelaziz Gouda & Till Zähringer & Young Feng Li & Humayra Quaid & Camilo J. Viasus Perez & Rui Song & Mohini Sain & Geoffrey Ozin, 2023. "Author Correction: Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    5. Alexandra Tavasoli & Abdelaziz Gouda & Till Zähringer & Young Feng Li & Humayra Quaid & Camilo J. Viasus Perez & Rui Song & Mohini Sain & Geoffrey Ozin, 2023. "Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Congyi Wu & Lili Lin & Jinjia Liu & Jingpeng Zhang & Feng Zhang & Tong Zhou & Ning Rui & Siyu Yao & Yuchen Deng & Feng Yang & Wenqian Xu & Jun Luo & Yue Zhao & Binhang Yan & Xiao-Dong Wen & José A. Ro, 2020. "Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yilong Zhao & Yunxuan Ding & Wenlong Li & Chang Liu & Yingzheng Li & Ziqi Zhao & Yu Shan & Fei Li & Licheng Sun & Fusheng Li, 2023. "Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Li, Sen & Guo, Longhui & He, Xinyu & Qiao, Congzhen & Tian, Yajie, 2022. "Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics," Renewable Energy, Elsevier, vol. 194(C), pages 89-99.
    5. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yao Chai & Yuehua Kong & Min Lin & Wei Lin & Jinni Shen & Jinlin Long & Rusheng Yuan & Wenxin Dai & Xuxu Wang & Zizhong Zhang, 2023. "Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Mohammad Qorbani & Amr Sabbah & Ying-Ren Lai & Septia Kholimatussadiah & Shaham Quadir & Chih-Yang Huang & Indrajit Shown & Yi-Fan Huang & Michitoshi Hayashi & Kuei-Hsien Chen & Li-Chyong Chen, 2022. "Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Huihui Zhang & Chang Xu & Xiaowen Zhan & Yu Yu & Kaifu Zhang & Qiquan Luo & Shan Gao & Jinlong Yang & Yi Xie, 2022. "Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Xiaodong Li & Li Li & Guangbo Chen & Xingyuan Chu & Xiaohui Liu & Chandrasekhar Naisa & Darius Pohl & Markus Löffler & Xinliang Feng, 2023. "Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Ji, Xiuling & Guo, Hao & Xue, Yaju & Huang, Yuhong & Zhang, Suojiang, 2023. "Microenvironment: An efficient avenue for converting CO2 to high-value compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Jiahui Bi & Pengsong Li & Jiyuan Liu & Shuaiqiang Jia & Yong Wang & Qinggong Zhu & Zhimin Liu & Buxing Han, 2023. "Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Yajuan Ma & Xiaoxuan Yi & Shaolei Wang & Tao Li & Bien Tan & Chuncheng Chen & Tetsuro Majima & Eric R. Waclawik & Huaiyong Zhu & Jingyu Wang, 2022. "Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Wei, Yanan & Li, Xin & Zhang, Yunlei & Yan, Yongsheng & Huo, Pengwei & Wang, Huiqin, 2021. "G-C3N4 quantum dots and Au nano particles co-modified CeO2/Fe3O4 micro-flowers photocatalyst for enhanced CO2 photoreduction," Renewable Energy, Elsevier, vol. 179(C), pages 756-765.
    16. Peng, Wanxi & Chuong Nguyen, Thi Hong & Nguyen, Dang Le Tri & Wang, Ting & Van Thi Tran, Thi & Le, Trung Hieu & Le, Hai Khoa & Grace, Andrews Nirmala & Singh, Pardeep & Raizadaa, Pankaj & Nguyen Dinh,, 2021. "A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Yuan-Sheng Xia & Meizhong Tang & Lei Zhang & Jiang Liu & Cheng Jiang & Guang-Kuo Gao & Long-Zhang Dong & Lan-Gui Xie & Ya-Qian Lan, 2022. "Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Thaylan Pinheiro Araújo & Georgios Giannakakis & Jordi Morales-Vidal & Mikhail Agrachev & Zaira Ruiz-Bernal & Phil Preikschas & Tangsheng Zou & Frank Krumeich & Patrik O. Willi & Wendelin J. Stark & R, 2024. "Low-nuclearity CuZn ensembles on ZnZrOx catalyze methanol synthesis from CO2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Yang Liu & Jianhui Sun & Houhou Huang & Linlu Bai & Xiaomeng Zhao & Binhong Qu & Lunqiao Xiong & Fuquan Bai & Junwang Tang & Liqiang Jing, 2023. "Improving CO2 photoconversion with ionic liquid and Co single atoms," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48122-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.