IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48046-1.html
   My bibliography  Save this article

MAPP unravels frequent co-regulation of splicing and polyadenylation by RNA-binding proteins and their dysregulation in cancer

Author

Listed:
  • Maciej Bak

    (Swiss Institute of Bioinformatics
    University of Basel)

  • Erik Nimwegen

    (Swiss Institute of Bioinformatics
    University of Basel)

  • Ian U. Kouzel

    (University of Konstanz)

  • Tamer Gur

    (University of Konstanz)

  • Ralf Schmidt

    (Swiss Institute of Bioinformatics
    University of Basel)

  • Mihaela Zavolan

    (Swiss Institute of Bioinformatics
    University of Basel)

  • Andreas J. Gruber

    (University of Konstanz)

Abstract

Maturation of eukaryotic pre-mRNAs via splicing and polyadenylation is modulated across cell types and conditions by a variety of RNA-binding proteins (RBPs). Although there exist over 1,500 RBPs in human cells, their binding motifs and functions still remain to be elucidated, especially in the complex environment of tissues and in the context of diseases. To overcome the lack of methods for the systematic and automated detection of sequence motif-guided pre-mRNA processing regulation from RNA sequencing (RNA-Seq) data we have developed MAPP (Motif Activity on Pre-mRNA Processing). Applying MAPP to RBP knock-down experiments reveals that many RBPs regulate both splicing and polyadenylation of nascent transcripts by acting on similar sequence motifs. MAPP not only infers these sequence motifs, but also unravels the position-dependent impact of the RBPs on pre-mRNA processing. Interestingly, all investigated RBPs that act on both splicing and 3’ end processing exhibit a consistently repressive or activating effect on both processes, providing a first glimpse on the underlying mechanism. Applying MAPP to normal and malignant brain tissue samples unveils that the motifs bound by the PTBP1 and RBFOX RBPs coordinately drive the oncogenic splicing program active in glioblastomas demonstrating that MAPP paves the way for characterizing pre-mRNA processing regulators under physiological and pathological conditions.

Suggested Citation

  • Maciej Bak & Erik Nimwegen & Ian U. Kouzel & Tamer Gur & Ralf Schmidt & Mihaela Zavolan & Andreas J. Gruber, 2024. "MAPP unravels frequent co-regulation of splicing and polyadenylation by RNA-binding proteins and their dysregulation in cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48046-1
    DOI: 10.1038/s41467-024-48046-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48046-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48046-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nian Liu & Qing Dai & Guanqun Zheng & Chuan He & Marc Parisien & Tao Pan, 2015. "N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions," Nature, Nature, vol. 518(7540), pages 560-564, February.
    2. Jernej Ule & Giovanni Stefani & Aldo Mele & Matteo Ruggiu & Xuning Wang & Bahar Taneri & Terry Gaasterland & Benjamin J. Blencowe & Robert B. Darnell, 2006. "An RNA map predicting Nova-dependent splicing regulation," Nature, Nature, vol. 444(7119), pages 580-586, November.
    3. Jung-Hyun Kim & Kyuho Jeong & Jianfeng Li & James M. Murphy & Lana Vukadin & Joshua K. Stone & Alexander Richard & Johnny Tran & G. Yancey Gillespie & Erik K. Flemington & Robert W. Sobol & Ssang-Teak, 2021. "SON drives oncogenic RNA splicing in glioblastoma by regulating PTBP1/PTBP2 switching and RBFOX2 activity," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Eric L. Nostrand & Peter Freese & Gabriel A. Pratt & Xiaofeng Wang & Xintao Wei & Rui Xiao & Steven M. Blue & Jia-Yu Chen & Neal A. L. Cody & Daniel Dominguez & Sara Olson & Balaji Sundararaman & Liju, 2020. "A large-scale binding and functional map of human RNA-binding proteins," Nature, Nature, vol. 583(7818), pages 711-719, July.
    5. Robert Siddaway & Scott Milos & Arun Kumaran Anguraj Vadivel & Tara H. W. Dobson & Jyothishmathi Swaminathan & Scott Ryall & Sanja Pajovic & Palak G. Patel & Javad Nazarian & Oren Becher & Michael Bru, 2022. "Splicing is an alternate oncogenic pathway activation mechanism in glioma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ainara González-Iglesias & Aida Arcas & Ana Domingo-Muelas & Estefania Mancini & Joan Galcerán & Juan Valcárcel & Isabel Fariñas & M. Angela Nieto, 2024. "Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Matvei Khoroshkin & Andrey Buyan & Martin Dodel & Albertas Navickas & Johnny Yu & Fathima Trejo & Anthony Doty & Rithvik Baratam & Shaopu Zhou & Sean B. Lee & Tanvi Joshi & Kristle Garcia & Benedict C, 2024. "Systematic identification of post-transcriptional regulatory modules," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Haofan Sun & Bin Fu & Xiaohong Qian & Ping Xu & Weijie Qin, 2024. "Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Timofey A. Karginov & Antoine Ménoret & Anthony T. Vella, 2022. "Optimal CD8+ T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Adrian B. Levine & Liana Nobre & Anirban Das & Scott Milos & Vanessa Bianchi & Monique Johnson & Nicholas R. Fernandez & Lucie Stengs & Scott Ryall & Michelle Ku & Mansuba Rana & Benjamin Laxer & Java, 2024. "Immuno-oncologic profiling of pediatric brain tumors reveals major clinical significance of the tumor immune microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Anna Knörlein & Chris P. Sarnowski & Tebbe Vries & Moritz Stoltz & Michael Götze & Ruedi Aebersold & Frédéric H.-T. Allain & Alexander Leitner & Jonathan Hall, 2022. "Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Miquel Anglada-Girotto & Ludovica Ciampi & Sophie Bonnal & Sarah A. Head & Samuel Miravet-Verde & Luis Serrano, 2024. "In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Johanna Luige & Alexandros Armaos & Gian Gaetano Tartaglia & Ulf Andersson Vang Ørom, 2024. "Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Sarah E. Harris & Maria S. Alexis & Gilbert Giri & Francisco F. Cavazos & Yue Hu & Jernej Murn & Maria M. Aleman & Christopher B. Burge & Daniel Dominguez, 2024. "Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Areum Han & Peter Stoilov & Anthony J Linares & Yu Zhou & Xiang-Dong Fu & Douglas L Black, 2014. "De Novo Prediction of PTBP1 Binding and Splicing Targets Reveals Unexpected Features of Its RNA Recognition and Function," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-18, January.
    11. Tamar Sapir & Aditya Kshirsagar & Anna Gorelik & Tsviya Olender & Ziv Porat & Ingrid E. Scheffer & David B. Goldstein & Orrin Devinsky & Orly Reiner, 2022. "Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Erika Schaudy & Kathrin Hölz & Jory Lietard & Mark M. Somoza, 2022. "Simple synthesis of massively parallel RNA microarrays via enzymatic conversion from DNA microarrays," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Mariela Cortés-López & Laura Schulz & Mihaela Enculescu & Claudia Paret & Bea Spiekermann & Mathieu Quesnel-Vallières & Manuel Torres-Diz & Sebastian Unic & Anke Busch & Anna Orekhova & Monika Kuban &, 2022. "High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Zili Song & Shuang Zhou & Hongjiao Zhang & Nancy P. Keller & Berl R. Oakley & Xiao Liu & Wen-Bing Yin, 2023. "Fungal secondary metabolism is governed by an RNA-binding protein CsdA/RsdA complex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Xiangbin Ruan & Kaining Hu & Xiaochang Zhang, 2023. "PIE-seq: identifying RNA-binding protein targets by dual RNA-deaminase editing and sequencing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. David Wang & Mathieu Quesnel-Vallieres & San Jewell & Moein Elzubeir & Kristen Lynch & Andrei Thomas-Tikhonenko & Yoseph Barash, 2023. "A Bayesian model for unsupervised detection of RNA splicing based subtypes in cancers," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Jasmin Bartl & Marco Zanini & Flavia Bernardi & Antoine Forget & Lena Blümel & Julie Talbot & Daniel Picard & Nan Qin & Gabriele Cancila & Qingsong Gao & Soumav Nath & Idriss Mahoungou Koumba & Mariet, 2022. "The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Xiaochuan Liu & Hao Chen & Zekun Li & Xiaoxiao Yang & Wen Jin & Yuting Wang & Jian Zheng & Long Li & Chenghao Xuan & Jiapei Yuan & Yang Yang, 2024. "InPACT: a computational method for accurate characterization of intronic polyadenylation from RNA sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Haoran Zhu & Yuning Yang & Yunhe Wang & Fuzhou Wang & Yujian Huang & Yi Chang & Ka-chun Wong & Xiangtao Li, 2023. "Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48046-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.