IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48044-3.html
   My bibliography  Save this article

Dynamic microvilli sculpt bristles at nanometric scale

Author

Listed:
  • Kyojiro N. Ikeda

    (Max Perutz Labs; University of Vienna)

  • Ilya Belevich

    (University of Helsinki)

  • Luis Zelaya-Lainez

    (TU Wien-Vienna University of Technology)

  • Lukas Orel

    (Max Perutz Labs; University of Vienna)

  • Josef Füssl

    (TU Wien-Vienna University of Technology)

  • Jaromír Gumulec

    (Masaryk University)

  • Christian Hellmich

    (TU Wien-Vienna University of Technology)

  • Eija Jokitalo

    (University of Helsinki)

  • Florian Raible

    (Max Perutz Labs; University of Vienna
    University of Vienna)

Abstract

Organisms generate shapes across size scales. Whereas patterning and morphogenesis of macroscopic tissues has been extensively studied, the principles underlying the formation of micrometric and submicrometric structures remain largely enigmatic. Individual cells of polychaete annelids, so-called chaetoblasts, are associated with the generation of chitinous bristles of highly stereotypic geometry. Here we show that bristle formation requires a chitin-producing enzyme specifically expressed in the chaetoblasts. Chaetoblasts exhibit dynamic cell surfaces with stereotypical patterns of actin-rich microvilli. These microvilli can be matched with internal and external structures of bristles reconstructed from serial block-face electron micrographs. Individual chitin teeth are deposited by microvilli in an extension-disassembly cycle resembling a biological 3D printer. Consistently, pharmacological interference with actin dynamics leads to defects in tooth formation. Our study reveals that both material and shape of bristles are encoded by the same cell, and that microvilli play a role in micro- to submicrometric sculpting of biomaterials.

Suggested Citation

  • Kyojiro N. Ikeda & Ilya Belevich & Luis Zelaya-Lainez & Lukas Orel & Josef Füssl & Jaromír Gumulec & Christian Hellmich & Eija Jokitalo & Florian Raible, 2024. "Dynamic microvilli sculpt bristles at nanometric scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48044-3
    DOI: 10.1038/s41467-024-48044-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48044-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48044-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ilya Belevich & Merja Joensuu & Darshan Kumar & Helena Vihinen & Eija Jokitalo, 2016. "Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets," PLOS Biology, Public Library of Science, vol. 14(1), pages 1-13, January.
    2. Wei Chen & Peng Cao & Yuansheng Liu & Ailing Yu & Dong Wang & Lei Chen & Rajamanikandan Sundarraj & Zhiguang Yuchi & Yong Gong & Hans Merzendorfer & Qing Yang, 2022. "Structural basis for directional chitin biosynthesis," Nature, Nature, vol. 610(7931), pages 402-408, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaroslaw Sedzicki & Dongchun Ni & Frank Lehmann & Henning Stahlberg & Christoph Dehio, 2024. "Structure-function analysis of the cyclic β-1,2-glucan synthase from Agrobacterium tumefaciens," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Dan-Dan Chen & Zhao-Bin Wang & Le-Xuan Wang & Peng Zhao & Cai-Hong Yun & Lin Bai, 2023. "Structure, catalysis, chitin transport, and selective inhibition of chitin synthase," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. H. G. Changela & Y. Kebukawa & L. Petera & M. Ferus & E. Chatzitheodoridis & L. Nejdl & R. Nebel & V. Protiva & P. Krepelka & J. Moravcova & R. Holbova & Z. Hlavenkova & T. Samoril & J. C. Bridges & S, 2024. "The evolution of organic material on Asteroid 162173 Ryugu and its delivery to Earth," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Ara Lee & Gihyun Sung & Sanghee Shin & Song-Yi Lee & Jaehwan Sim & Truong Thi My Nhung & Tran Diem Nghi & Sang Ki Park & Ponnusamy Pon Sathieshkumar & Imkyeung Kang & Ji Young Mun & Jong-Seo Kim & Hyu, 2024. "OrthoID: profiling dynamic proteomes through time and space using mutually orthogonal chemical tools," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Liang Wang & Ziyun Yang & Fudo Satoshi & Xavier Prasanna & Ziyi Yan & Helena Vihinen & Yaxing Chen & Yue Zhao & Xiumei He & Qian Bu & Hongchun Li & Ying Zhao & Linhong Jiang & Feng Qin & Yanping Dai &, 2024. "Membrane remodeling by FAM92A1 during brain development regulates neuronal morphology, synaptic function, and cognition," Nature Communications, Nature, vol. 15(1), pages 1-30, December.
    6. Martin Meschkat & Anna M. Steyer & Marie-Theres Weil & Kathrin Kusch & Olaf Jahn & Lars Piepkorn & Paola Agüi-Gonzalez & Nhu Thi Ngoc Phan & Torben Ruhwedel & Boguslawa Sadowski & Silvio O. Rizzoli & , 2022. "White matter integrity in mice requires continuous myelin synthesis at the inner tongue," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48044-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.