IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v610y2022i7931d10.1038_s41586-022-05244-5.html
   My bibliography  Save this article

Structural basis for directional chitin biosynthesis

Author

Listed:
  • Wei Chen

    (Chinese Academy of Agricultural Sciences
    Chinese Academy of Agricultural Sciences)

  • Peng Cao

    (Beijing University of Technology)

  • Yuansheng Liu

    (Dalian University of Technology)

  • Ailing Yu

    (Chinese Academy of Agricultural Sciences)

  • Dong Wang

    (Dalian University of Technology)

  • Lei Chen

    (Chinese Academy of Agricultural Sciences)

  • Rajamanikandan Sundarraj

    (Tianjin University)

  • Zhiguang Yuchi

    (Tianjin University)

  • Yong Gong

    (Chinese Academy of Sciences)

  • Hans Merzendorfer

    (University of Siegen)

  • Qing Yang

    (Chinese Academy of Agricultural Sciences
    Chinese Academy of Agricultural Sciences
    Dalian University of Technology)

Abstract

Chitin, the most abundant aminopolysaccharide in nature, is an extracellular polymer consisting of N-acetylglucosamine (GlcNAc) units1. The key reactions of chitin biosynthesis are catalysed by chitin synthase2–4, a membrane-integrated glycosyltransferase that transfers GlcNAc from UDP-GlcNAc to a growing chitin chain. However, the precise mechanism of this process has yet to be elucidated. Here we report five cryo-electron microscopy structures of a chitin synthase from the devastating soybean root rot pathogenic oomycete Phytophthora sojae (PsChs1). They represent the apo, GlcNAc-bound, nascent chitin oligomer-bound, UDP-bound (post-synthesis) and chitin synthase inhibitor nikkomycin Z-bound states of the enzyme, providing detailed views into the multiple steps of chitin biosynthesis and its competitive inhibition. The structures reveal the chitin synthesis reaction chamber that has the substrate-binding site, the catalytic centre and the entrance to the polymer-translocating channel that allows the product polymer to be discharged. This arrangement reflects consecutive key events in chitin biosynthesis from UDP-GlcNAc binding and polymer elongation to the release of the product. We identified a swinging loop within the chitin-translocating channel, which acts as a ‘gate lock’ that prevents the substrate from leaving while directing the product polymer into the translocating channel for discharge to the extracellular side of the cell membrane. This work reveals the directional multistep mechanism of chitin biosynthesis and provides a structural basis for inhibition of chitin synthesis.

Suggested Citation

  • Wei Chen & Peng Cao & Yuansheng Liu & Ailing Yu & Dong Wang & Lei Chen & Rajamanikandan Sundarraj & Zhiguang Yuchi & Yong Gong & Hans Merzendorfer & Qing Yang, 2022. "Structural basis for directional chitin biosynthesis," Nature, Nature, vol. 610(7931), pages 402-408, October.
  • Handle: RePEc:nat:nature:v:610:y:2022:i:7931:d:10.1038_s41586-022-05244-5
    DOI: 10.1038/s41586-022-05244-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05244-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05244-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaroslaw Sedzicki & Dongchun Ni & Frank Lehmann & Henning Stahlberg & Christoph Dehio, 2024. "Structure-function analysis of the cyclic β-1,2-glucan synthase from Agrobacterium tumefaciens," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Dan-Dan Chen & Zhao-Bin Wang & Le-Xuan Wang & Peng Zhao & Cai-Hong Yun & Lin Bai, 2023. "Structure, catalysis, chitin transport, and selective inhibition of chitin synthase," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Kyojiro N. Ikeda & Ilya Belevich & Luis Zelaya-Lainez & Lukas Orel & Josef Füssl & Jaromír Gumulec & Christian Hellmich & Eija Jokitalo & Florian Raible, 2024. "Dynamic microvilli sculpt bristles at nanometric scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:610:y:2022:i:7931:d:10.1038_s41586-022-05244-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.