A human-machine interface for automatic exploration of chemical reaction networks
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-47997-9
Download full text from publisher
References listed on IDEAS
- Jörg Behler & Gábor Csányi, 2021. "Machine learning potentials for extended systems: a perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-11, July.
- Zachary W. Ulissi & Andrew J. Medford & Thomas Bligaard & Jens K. Nørskov, 2017. "To address surface reaction network complexity using scaling relations machine learning and DFT calculations," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
- So Takamoto & Chikashi Shinagawa & Daisuke Motoki & Kosuke Nakago & Wenwen Li & Iori Kurata & Taku Watanabe & Yoshihiro Yayama & Hiroki Iriguchi & Yusuke Asano & Tasuku Onodera & Takafumi Ishii & Taka, 2022. "Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Qiyuan Zhao & Yinan Xu & Jeffrey Greeley & Brett M. Savoie, 2022. "Deep reaction network exploration at a heterogeneous catalytic interface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Katja-Sophia Csizi & Miguel Steiner & Markus Reiher, 2024. "Nanoscale chemical reaction exploration with a quantum magnifying glass," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Katja-Sophia Csizi & Miguel Steiner & Markus Reiher, 2024. "Nanoscale chemical reaction exploration with a quantum magnifying glass," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Shunsaku Yasumura & Kenichiro Saita & Takumi Miyakage & Ken Nagai & Kenichi Kon & Takashi Toyao & Zen Maeno & Tetsuya Taketsugu & Ken-ichi Shimizu, 2023. "Designing main-group catalysts for low-temperature methane combustion by ozone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Xiyang Wang & Qilei Yang & Xinbo Li & Zhen Li & Chuan Gao & Hui Zhang & Xuefeng Chu & Carl Redshaw & Shucheng Shi & Yimin A. Wu & Yongliang Ma & Yue Peng & Junhua Li & Shouhua Feng, 2024. "Exploring the dynamic evolution of lattice oxygen on exsolved-Mn2O3@SmMn2O5 interfaces for NO Oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Andreas Erlebach & Martin Šípka & Indranil Saha & Petr Nachtigall & Christopher J. Heard & Lukáš Grajciar, 2024. "A reactive neural network framework for water-loaded acidic zeolites," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Keke Song & Rui Zhao & Jiahui Liu & Yanzhou Wang & Eric Lindgren & Yong Wang & Shunda Chen & Ke Xu & Ting Liang & Penghua Ying & Nan Xu & Zhiqiang Zhao & Jiuyang Shi & Junjie Wang & Shuang Lyu & Zezhu, 2024. "General-purpose machine-learned potential for 16 elemental metals and their alloys," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Kangming Li & Daniel Persaud & Kamal Choudhary & Brian DeCost & Michael Greenwood & Jason Hattrick-Simpers, 2023. "Exploiting redundancy in large materials datasets for efficient machine learning with less data," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Xufan Li & Samuel Wyss & Emanuil Yanev & Qing-Jie Li & Shuang Wu & Yongwen Sun & Raymond R. Unocic & Joseph Stage & Matthew Strasbourg & Lucas M. Sassi & Yingxin Zhu & Ju Li & Yang Yang & James Hone &, 2024. "Width-dependent continuous growth of atomically thin quantum nanoribbons from nanoalloy seeds in chalcogen vapor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Damilola Ologunagba & Shyam Kattel, 2020. "Machine Learning Prediction of Surface Segregation Energies on Low Index Bimetallic Surfaces," Energies, MDPI, vol. 13(9), pages 1-13, May.
- Yuta Sakanaka & Shotaro Hiraide & Iori Sugawara & Hajime Uematsu & Shogo Kawaguchi & Minoru T. Miyahara & Satoshi Watanabe, 2023. "Generalised analytical method unravels framework-dependent kinetics of adsorption-induced structural transition in flexible metal–organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47997-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.