IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32514-7.html
   My bibliography  Save this article

Deep reaction network exploration at a heterogeneous catalytic interface

Author

Listed:
  • Qiyuan Zhao

    (Purdue University)

  • Yinan Xu

    (Purdue University)

  • Jeffrey Greeley

    (Purdue University)

  • Brett M. Savoie

    (Purdue University)

Abstract

Characterizing the reaction energies and barriers of reaction networks is central to catalyst development. However, heterogeneous catalytic surfaces pose several unique challenges to automatic reaction network characterization, including large sizes and open-ended reactant sets, that make ad hoc network construction the current state-of-the-art. Here, we show how automated network exploration algorithms can be adapted to the constraints of heterogeneous systems using ethylene oligomerization on silica-supported single-site Ga3+ as a model system. Using only graph-based rules for exploring the network and elementary constraints based on activation energy and size for identifying network terminations, a comprehensive reaction network is generated and validated against standard methods. The algorithm (re)discovers the Ga-alkyl-centered Cossee-Arlman mechanism that is hypothesized to drive major product formation while also predicting several new pathways for producing alkanes and coke precursors. These results demonstrate that automated reaction exploration algorithms are rapidly maturing towards general purpose capability for exploratory catalytic applications.

Suggested Citation

  • Qiyuan Zhao & Yinan Xu & Jeffrey Greeley & Brett M. Savoie, 2022. "Deep reaction network exploration at a heterogeneous catalytic interface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32514-7
    DOI: 10.1038/s41467-022-32514-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32514-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32514-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicole J. LiBretto & Yinan Xu & Aubrey Quigley & Ethan Edwards & Rhea Nargund & Juan Carlos Vega-Vila & Richard Caulkins & Arunima Saxena & Rajamani Gounder & Jeffrey Greeley & Guanghui Zhang & Jeffre, 2021. "Olefin oligomerization by main group Ga3+ and Zn2+ single site catalysts on SiO2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Steiner & Markus Reiher, 2024. "A human-machine interface for automatic exploration of chemical reaction networks," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zijun Huang & Dedong He & Weihua Deng & Guowu Jin & Ke Li & Yongming Luo, 2023. "Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32514-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.