IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47621-w.html
   My bibliography  Save this article

The environmental sustainability of digital content consumption

Author

Listed:
  • Robert Istrate

    (ETH Zürich
    Leiden University)

  • Victor Tulus

    (ETH Zürich)

  • Robert N. Grass

    (ETH Zürich)

  • Laurent Vanbever

    (ETH Zürich)

  • Wendelin J. Stark

    (ETH Zürich)

  • Gonzalo Guillén-Gosálbez

    (ETH Zürich)

Abstract

Internet access has reached 60% of the global population, with the average user spending over 40% of their waking life on the Internet, yet the environmental implications remain poorly understood. Here, we assess the environmental impacts of digital content consumption in relation to the Earth’s carrying capacity, finding that currently the global average consumption of web surfing, social media, video and music streaming, and video conferencing could account for approximately 40% of the per capita carbon budget consistent with limiting global warming to 1.5 °C, as well as around 55% of the per capita carrying capacity for mineral and metal resources use and over 10% for five other impact categories. Decarbonising electricity would substantially mitigate the climate impacts linked to Internet consumption, while the use of mineral and metal resources would remain of concern. A synergistic combination of rapid decarbonisation and additional measures aimed at reducing the use of fresh raw materials in electronic devices (e.g., lifetime extension) is paramount to prevent the growing Internet demand from exacerbating the pressure on the finite Earth’s carrying capacity.

Suggested Citation

  • Robert Istrate & Victor Tulus & Robert N. Grass & Laurent Vanbever & Wendelin J. Stark & Gonzalo Guillén-Gosálbez, 2024. "The environmental sustainability of digital content consumption," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47621-w
    DOI: 10.1038/s41467-024-47621-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47621-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47621-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua Aslan & Kieren Mayers & Jonathan G. Koomey & Chris France, 2018. "Electricity Intensity of Internet Data Transmission: Untangling the Estimates," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 785-798, August.
    2. Tova Billstein & Anna Björklund & Tomas Rydberg, 2021. "Life Cycle Assessment of Network Traffic: A Review of Challenges and Possible Solutions," Sustainability, MDPI, vol. 13(20), pages 1-12, October.
    3. Lucas Chancel, 2022. "Global carbon inequality over 1990–2019," Nature Sustainability, Nature, vol. 5(11), pages 931-938, November.
    4. Lucas Chancel, 2022. "Global carbon inequality over 1990–2019," PSE-Ecole d'économie de Paris (Postprint) halshs-04157767, HAL.
    5. Altanshagai Batmunkh, 2022. "Carbon Footprint of The Most Popular Social Media Platforms," Sustainability, MDPI, vol. 14(4), pages 1-10, February.
    6. Koot, Martijn & Wijnhoven, Fons, 2021. "Usage impact on data center electricity needs: A system dynamic forecasting model," Applied Energy, Elsevier, vol. 291(C).
    7. Lucas Chancel, 2022. "Global carbon inequality over 1990–2019," Post-Print halshs-04157767, HAL.
    8. Carlos Pozo & Ángel Galán-Martín & David M. Reiner & Niall Dowell & Gonzalo Guillén-Gosálbez, 2020. "Equity in allocating carbon dioxide removal quotas," Nature Climate Change, Nature, vol. 10(7), pages 640-646, July.
    9. Max J. Krause & Thabet Tolaymat, 2018. "Author Correction: Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(12), pages 814-814, December.
    10. Stijn van Ewijk & Paul Hoekman, 2021. "Emission reduction potentials for academic conference travel," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 778-788, June.
    11. Jens Malmodin & Dag Lundén, 2018. "The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015," Sustainability, MDPI, vol. 10(9), pages 1-31, August.
    12. Nicola Jones, 2018. "How to stop data centres from gobbling up the world’s electricity," Nature, Nature, vol. 561(7722), pages 163-166, September.
    13. Vlad C. Coroama & Lorenz M. Hilty & Ernst Heiri & Frank M. Horn, 2013. "The Direct Energy Demand of Internet Data Flows," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 680-688, October.
    14. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Lars Dittmar & Aaron Praktiknjo, 2019. "Could Bitcoin emissions push global warming above 2 °C?," Nature Climate Change, Nature, vol. 9(9), pages 656-657, September.
    16. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    17. Eric Masanet & Arman Shehabi & Jonathan Koomey, 2013. "Characteristics of low-carbon data centres," Nature Climate Change, Nature, vol. 3(7), pages 627-630, July.
    18. Max J. Krause & Thabet Tolaymat, 2018. "Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(11), pages 711-718, November.
    19. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    20. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    21. Yanqiu Tao & Debbie Steckel & Jiří Jaromír Klemeš & Fengqi You, 2021. "Trend towards virtual and hybrid conferences may be an effective climate change mitigation strategy," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Škare, Marinko & Gavurova, Beata & Porada-Rochon, Malgorzata, 2024. "Digitalization and carbon footprint: Building a path to a sustainable economic growth," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    2. Ivanova, Diana & Wieland, Hanspeter, 2023. "Tracing carbon footprints to intermediate industries in the United Kingdom," Ecological Economics, Elsevier, vol. 214(C).
    3. Shize Qin & Lena Klaa{ss}en & Ulrich Gallersdorfer & Christian Stoll & Da Zhang, 2020. "Bitcoin's future carbon footprint," Papers 2011.02612, arXiv.org, revised Jan 2021.
    4. Tobias Angel & Alexandre Berthe & Valeria Costantini & Mariagrazia D’Angeli, 2024. "How the nature of inequality reduction matters for CO2 emissions," Working Papers 2024.14, Fondazione Eni Enrico Mattei.
    5. Antonio Cavallin Toscani & Atalay Atasu & Luk N. Van Wassenhove & Andrea Vinelli, 2023. "Life cycle assessment of in‐person, virtual, and hybrid academic conferences: New evidence and perspectives," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1461-1475, December.
    6. André, Mathias & Bourgeois, Alexandre & Combet, Emmanuel & Lequien, Matthieu & Pottier, Antonin, 2024. "Challenges in measuring the distribution of carbon footprints: The role of product and price heterogeneity," Ecological Economics, Elsevier, vol. 220(C).
    7. Francisco & Veronica Lupi & Wouter Botzen & Richard S.J. Tol, 2024. "Urban and Non-Urban Contributions to the Social Cost of Carbon," Working Paper Series 0424, Department of Economics, University of Sussex Business School.
    8. Missbach, Leonard & Steckel, Jan Christoph, 2024. "Distributional impacts of climate policy and effective compensation: Evidence from 88 countries," EconStor Preprints 296491, ZBW - Leibniz Information Centre for Economics.
    9. Haimeng Liu & Liwei Wang & Jinzhou Wang & Hangtian Ming & Xuankuang Wu & Gang Xu & Shengwu Zhang, 2024. "Multidimensional spatial inequality in China and its relationship with economic growth," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    10. Federica Cappelli, 2024. "Unequal contributions to CO2 emissions along the income distribution within and between countries," Working Papers 2024.06, Fondazione Eni Enrico Mattei.
    11. Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "Does financial inclusion achieve the dual dividends of narrowing carbon inequality within cities and between cities? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    12. Hebous, Shafik & Vernon-Lin, Nate, 2024. "Cryptocarbon: How much is the corrective tax?," Energy Economics, Elsevier, vol. 138(C).
    13. Chao, Chi-Chur & Trinh, Cong Tam & Nguyen, Xuan, 2023. "Carbon neutrality and wage inequality in a sustainable economy: New evidence from business dynamism," Economic Modelling, Elsevier, vol. 127(C).
    14. Oskar Lindgren & Erik Elwing & Mikael Karlsson & Sverker C. Jagers, 2024. "Public acceptability of climate-motivated rationing," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-9, December.
    15. Okushima, Shinichiro, 2024. "Measuring energy sufficiency: A state of being neither in energy poverty nor energy extravagance," Applied Energy, Elsevier, vol. 354(PA).
    16. Kostov, Lyuboslav, 2023. "Modern inequalities: a review of the literature," SEER Journal for Labour and Social Affairs in Eastern Europe, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 26(1), pages 81-94.
    17. Baur, Dirk G. & Oll, Josua, 2022. "Bitcoin investments and climate change: A financial and carbon intensity perspective," Finance Research Letters, Elsevier, vol. 47(PA).
    18. Lutz Sager, 2023. "Global air quality inequality over 2000-2020," Papers 2307.15669, arXiv.org.
    19. Córcoles, Carmen & López, Luis Antonio & Osorio, Pilar & Zafrilla, Jorge, 2024. "The carbon footprint of the empty Castilla-La Mancha," Energy Policy, Elsevier, vol. 184(C).
    20. Bhar, Soumyajit & Lele, Sharachchandra & Min, Jihoon & Rao, Narasimha D., 2024. "Water, air pollution and carbon footprints of conspicuous/luxury consumption in India," Ecological Economics, Elsevier, vol. 218(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47621-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.