IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47587-9.html
   My bibliography  Save this article

Omecamtiv mecarbil and Mavacamten target the same myosin pocket despite opposite effects in heart contraction

Author

Listed:
  • Daniel Auguin

    (Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144
    Université d’Orléans)

  • Julien Robert-Paganin

    (Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144)

  • Stéphane Réty

    (Université Claude Bernard Lyon 1)

  • Carlos Kikuti

    (Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144)

  • Amandine David

    (Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144)

  • Gabriele Theumer

    (TU Dresden)

  • Arndt W. Schmidt

    (TU Dresden)

  • Hans-Joachim Knölker

    (TU Dresden)

  • Anne Houdusse

    (Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144)

Abstract

Inherited cardiomyopathies are common cardiac diseases worldwide, leading in the late stage to heart failure and death. The most promising treatments against these diseases are small molecules directly modulating the force produced by β-cardiac myosin, the molecular motor driving heart contraction. Omecamtiv mecarbil and Mavacamten are two such molecules that completed phase 3 clinical trials, and the inhibitor Mavacamten is now approved by the FDA. In contrast to Mavacamten, Omecamtiv mecarbil acts as an activator of cardiac contractility. Here, we reveal by X-ray crystallography that both drugs target the same pocket and stabilize a pre-stroke structural state, with only few local differences. All-atom molecular dynamics simulations reveal how these molecules produce distinct effects in motor allostery thus impacting force production in opposite way. Altogether, our results provide the framework for rational drug development for the purpose of personalized medicine.

Suggested Citation

  • Daniel Auguin & Julien Robert-Paganin & Stéphane Réty & Carlos Kikuti & Amandine David & Gabriele Theumer & Arndt W. Schmidt & Hans-Joachim Knölker & Anne Houdusse, 2024. "Omecamtiv mecarbil and Mavacamten target the same myosin pocket despite opposite effects in heart contraction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47587-9
    DOI: 10.1038/s41467-024-47587-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47587-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47587-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaima Hashem & Matteo Tiberti & Arianna Fornili, 2017. "Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-26, November.
    2. Julien Robert-Paganin & James P. Robblee & Daniel Auguin & Thomas C. A. Blake & Carol S. Bookwalter & Elena B. Krementsova & Dihia Moussaoui & Michael J. Previs & Guillaume Jousset & Jake Baum & Kathl, 2019. "Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Michael S. Woody & Michael J. Greenberg & Bipasha Barua & Donald A. Winkelmann & Yale E. Goldman & E. Michael Ostap, 2018. "Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. Vicente J. Planelles-Herrero & James J. Hartman & Julien Robert-Paganin & Fady I. Malik & Anne Houdusse, 2017. "Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    5. Alessandro Grinzato & Daniel Auguin & Carlos Kikuti & Neha Nandwani & Dihia Moussaoui & Divya Pathak & Eaazhisai Kandiah & Kathleen M. Ruppel & James A. Spudich & Anne Houdusse & Julien Robert-Paganin, 2023. "Cryo-EM structure of the folded-back state of human β-cardiac myosin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Julien Robert-Paganin & Daniel Auguin & Anne Houdusse, 2018. "Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    7. Dihia Moussaoui & James P. Robblee & Julien Robert-Paganin & Daniel Auguin & Fabio Fisher & Patricia M. Fagnant & Jill E. Macfarlane & Julia Schaletzky & Eddie Wehri & Christoph Mueller-Dieckmann & Ja, 2023. "Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dihia Moussaoui & James P. Robblee & Julien Robert-Paganin & Daniel Auguin & Fabio Fisher & Patricia M. Fagnant & Jill E. Macfarlane & Julia Schaletzky & Eddie Wehri & Christoph Mueller-Dieckmann & Ja, 2023. "Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Alessandro Grinzato & Daniel Auguin & Carlos Kikuti & Neha Nandwani & Dihia Moussaoui & Divya Pathak & Eaazhisai Kandiah & Kathleen M. Ruppel & James A. Spudich & Anne Houdusse & Julien Robert-Paganin, 2023. "Cryo-EM structure of the folded-back state of human β-cardiac myosin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Priyanka Parijat & Seetharamaiah Attili & Zoe Hoare & Michael Shattock & Victor Kenyon & Thomas Kampourakis, 2023. "Discovery of a novel cardiac-specific myosin modulator using artificial intelligence-based virtual screening," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Fengfeng Niu & Lingxuan Li & Lei Wang & Jinman Xiao & Shun Xu & Yong Liu & Leishu Lin & Cong Yu & Zhiyi Wei, 2024. "Autoinhibition and activation of myosin VI revealed by its cryo-EM structure," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Louise Canon & Carlos Kikuti & Vicente J. Planelles-Herrero & Tianming Lin & Franck Mayeux & Helena Sirkia & Young il Lee & Leila Heidsieck & Léonid Velikovsky & Amandine David & Xiaoyan Liu & Dihia M, 2023. "How myosin VI traps its off-state, is activated and dimerizes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Anthony L. Hessel & Nichlas M. Engels & Michel N. Kuehn & Devin Nissen & Rachel L. Sadler & Weikang Ma & Thomas C. Irving & Wolfgang A. Linke & Samantha P. Harris, 2024. "Myosin-binding protein C regulates the sarcomere lattice and stabilizes the OFF states of myosin heads," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Shaima Hashem & Matteo Tiberti & Arianna Fornili, 2017. "Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-26, November.
    8. Luisa Moretto & Marko Ušaj & Oleg Matusovsky & Dilson E. Rassier & Ran Friedman & Alf Månsson, 2022. "Multistep orthophosphate release tunes actomyosin energy transduction," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47587-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.