IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00176-5.html
   My bibliography  Save this article

Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil

Author

Listed:
  • Vicente J. Planelles-Herrero

    (PSL Research University, CNRS
    Sorbonne Universités, IFD)

  • James J. Hartman

    (Cytokinetics, Inc.)

  • Julien Robert-Paganin

    (PSL Research University, CNRS)

  • Fady I. Malik

    (Cytokinetics, Inc.)

  • Anne Houdusse

    (PSL Research University, CNRS)

Abstract

Omecamtiv mecarbil is a selective, small-molecule activator of cardiac myosin that is being developed as a potential treatment for heart failure with reduced ejection fraction. Here we determine the crystal structure of cardiac myosin in the pre-powerstroke state, the most relevant state suggested by kinetic studies, both with (2.45 Å) and without (3.10 Å) omecamtiv mecarbil bound. Omecamtiv mecarbil does not change the motor mechanism nor does it influence myosin structure. Instead, omecamtiv mecarbil binds to an allosteric site that stabilizes the lever arm in a primed position resulting in accumulation of cardiac myosin in the primed state prior to onset of cardiac contraction, thus increasing the number of heads that can bind to the actin filament and undergo a powerstroke once the cardiac cycle starts. The mechanism of action of omecamtiv mecarbil also provides insights into uncovering how force is generated by molecular motors.

Suggested Citation

  • Vicente J. Planelles-Herrero & James J. Hartman & Julien Robert-Paganin & Fady I. Malik & Anne Houdusse, 2017. "Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00176-5
    DOI: 10.1038/s41467-017-00176-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00176-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00176-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Grinzato & Daniel Auguin & Carlos Kikuti & Neha Nandwani & Dihia Moussaoui & Divya Pathak & Eaazhisai Kandiah & Kathleen M. Ruppel & James A. Spudich & Anne Houdusse & Julien Robert-Paganin, 2023. "Cryo-EM structure of the folded-back state of human β-cardiac myosin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Shaima Hashem & Matteo Tiberti & Arianna Fornili, 2017. "Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-26, November.
    3. Daniel Auguin & Julien Robert-Paganin & Stéphane Réty & Carlos Kikuti & Amandine David & Gabriele Theumer & Arndt W. Schmidt & Hans-Joachim Knölker & Anne Houdusse, 2024. "Omecamtiv mecarbil and Mavacamten target the same myosin pocket despite opposite effects in heart contraction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Dihia Moussaoui & James P. Robblee & Julien Robert-Paganin & Daniel Auguin & Fabio Fisher & Patricia M. Fagnant & Jill E. Macfarlane & Julia Schaletzky & Eddie Wehri & Christoph Mueller-Dieckmann & Ja, 2023. "Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Luisa Moretto & Marko Ušaj & Oleg Matusovsky & Dilson E. Rassier & Ran Friedman & Alf Månsson, 2022. "Multistep orthophosphate release tunes actomyosin energy transduction," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00176-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.