IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43538-y.html
   My bibliography  Save this article

Discovery of a novel cardiac-specific myosin modulator using artificial intelligence-based virtual screening

Author

Listed:
  • Priyanka Parijat

    (King’s College London)

  • Seetharamaiah Attili

    (King’s College London)

  • Zoe Hoare

    (King’s College London)

  • Michael Shattock

    (King’s College London)

  • Victor Kenyon

    (Atomwise Inc.)

  • Thomas Kampourakis

    (King’s College London)

Abstract

Direct modulation of cardiac myosin function has emerged as a therapeutic target for both heart disease and heart failure. However, the development of myosin-based therapeutics has been hampered by the lack of targeted in vitro screening assays. In this study we use Artificial Intelligence-based virtual high throughput screening (vHTS) to identify novel small molecule effectors of human β-cardiac myosin. We test the top scoring compounds from vHTS in biochemical counter-screens and identify a novel chemical scaffold called ‘F10’ as a cardiac-specific low-micromolar myosin inhibitor. Biochemical and biophysical characterization in both isolated proteins and muscle fibers show that F10 stabilizes both the biochemical (i.e. super-relaxed state) and structural (i.e. interacting heads motif) OFF state of cardiac myosin, and reduces force and left ventricular pressure development in isolated myofilaments and Langendorff-perfused hearts, respectively. F10 is a tunable scaffold for the further development of a novel class of myosin modulators.

Suggested Citation

  • Priyanka Parijat & Seetharamaiah Attili & Zoe Hoare & Michael Shattock & Victor Kenyon & Thomas Kampourakis, 2023. "Discovery of a novel cardiac-specific myosin modulator using artificial intelligence-based virtual screening," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43538-y
    DOI: 10.1038/s41467-023-43538-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43538-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43538-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael S. Woody & Michael J. Greenberg & Bipasha Barua & Donald A. Winkelmann & Yale E. Goldman & E. Michael Ostap, 2018. "Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Julien Robert-Paganin & Daniel Auguin & Anne Houdusse, 2018. "Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Thomas Kampourakis & Malcolm Irving, 2021. "The regulatory light chain mediates inactivation of myosin motors during active shortening of cardiac muscle," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Auguin & Julien Robert-Paganin & Stéphane Réty & Carlos Kikuti & Amandine David & Gabriele Theumer & Arndt W. Schmidt & Hans-Joachim Knölker & Anne Houdusse, 2024. "Omecamtiv mecarbil and Mavacamten target the same myosin pocket despite opposite effects in heart contraction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Alessandro Grinzato & Daniel Auguin & Carlos Kikuti & Neha Nandwani & Dihia Moussaoui & Divya Pathak & Eaazhisai Kandiah & Kathleen M. Ruppel & James A. Spudich & Anne Houdusse & Julien Robert-Paganin, 2023. "Cryo-EM structure of the folded-back state of human β-cardiac myosin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Louise Canon & Carlos Kikuti & Vicente J. Planelles-Herrero & Tianming Lin & Franck Mayeux & Helena Sirkia & Young il Lee & Leila Heidsieck & Léonid Velikovsky & Amandine David & Xiaoyan Liu & Dihia M, 2023. "How myosin VI traps its off-state, is activated and dimerizes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43538-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.