IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47476-1.html
   My bibliography  Save this article

Dynamically stable radiation pressure propulsion of flexible lightsails for interstellar exploration

Author

Listed:
  • Ramon Gao

    (California Institute of Technology)

  • Michael D. Kelzenberg

    (California Institute of Technology)

  • Harry A. Atwater

    (California Institute of Technology)

Abstract

Meter-scale, submicron-thick lightsail spacecraft, propelled to relativistic velocities via photon pressure using high-power density laser radiation, offer a potentially new route to space exploration within and beyond the solar system, posing substantial challenges for materials science and engineering. We analyze the structural and photonic design of flexible lightsails by developing a mesh-based multiphysics simulator based on linear elastic theory. We observe spin-stabilized flexible lightsail shapes and designs that are immune to shape collapse during acceleration and exhibit beam-riding stability despite deformations caused by photon pressure and thermal expansion. Excitingly, nanophotonic lightsails based on planar silicon nitride membranes patterned with suitable optical metagratings exhibit both mechanically and dynamically stable propulsion along the pump laser axis. These advances suggest that laser-driven acceleration of membrane-like lightsails to the relativistic speeds needed to access interstellar distances is conceptually feasible, and that their fabrication could be achieved by scaling up modern microfabrication technology.

Suggested Citation

  • Ramon Gao & Michael D. Kelzenberg & Harry A. Atwater, 2024. "Dynamically stable radiation pressure propulsion of flexible lightsails for interstellar exploration," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47476-1
    DOI: 10.1038/s41467-024-47476-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47476-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47476-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fabio Crameri & Grace E. Shephard & Philip J. Heron, 2020. "The misuse of colour in science communication," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Westarp & Felix Brandt & Lena Neumair & Christina Betz & Amin Dagane & Sebastian Kemper & Christoph R. Jacob & Peter Neubauer & Anke Kurreck & Felix Kaspar, 2024. "Nucleoside Phosphorylases make N7-xanthosine," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Tiemo Pedergnana & Abel Faure-Beaulieu & Romain Fleury & Nicolas Noiray, 2024. "Loss-compensated non-reciprocal scattering based on synchronization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Guido Fioravanti & Michela Cameletti & Sara Martino & Giorgio Cattani & Enrico Pisoni, 2022. "A spatiotemporal analysis of NO2 concentrations during the Italian 2020 COVID‐19 lockdown," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    4. Shubham Chandra & Chengcheng Wang & Shu Beng Tor & Upadrasta Ramamurty & Xipeng Tan, 2024. "Powder-size driven facile microstructure control in powder-fusion metal additive manufacturing processes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Magda Dubois & Tobias U. Hauser, 2022. "Value-free random exploration is linked to impulsivity," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Xiaochuan Tian & Mark D. Behn & Garrett Ito & Jana C. Schierjott & Boris J. P. Kaus & Anton A. Popov, 2024. "Magmatism controls global oceanic transform fault topography," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Grace E. Shephard & Christine Houser & John W. Hernlund & Juan J. Valencia-Cardona & Reidar G. Trønnes & Renata M. Wentzcovitch, 2021. "Seismological expression of the iron spin crossover in ferropericlase in the Earth’s lower mantle," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Alik Ismail-Zadeh & Anne Davaille & Jean Besse & Yuri Volozh, 2024. "East European sedimentary basins long heated by a fading mantle upwelling," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Chris Gorman & Davide Punzo & Igor Octaviano & Steven Pieper & William J. R. Longabaugh & David A. Clunie & Ron Kikinis & Andrey Y. Fedorov & Markus D. Herrmann, 2023. "Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47476-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.