IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47438-7.html
   My bibliography  Save this article

A widely conserved protein Rof inhibits transcription termination factor Rho and promotes Salmonella virulence program

Author

Listed:
  • Jing Zhang

    (Chinese Academy of Sciences)

  • Shuo Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wei Zhou

    (Beijing Institute of Radiation Medicine)

  • Xiang Zhang

    (Fudan University)

  • Guanjin Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ruoxuan Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xingyu Lin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ziying Chen

    (Chinese Academy of Sciences
    Fudan University)

  • Fang Liu

    (Chinese Academy of Sciences)

  • Pan Shen

    (Beijing Institute of Radiation Medicine)

  • Xiaogen Zhou

    (Zhejiang University of Technology)

  • Yue Gao

    (Beijing Institute of Radiation Medicine)

  • Zhenguo Chen

    (Fudan University)

  • Yanjie Chao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chengyuan Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof’s N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho’s primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.

Suggested Citation

  • Jing Zhang & Shuo Zhang & Wei Zhou & Xiang Zhang & Guanjin Li & Ruoxuan Li & Xingyu Lin & Ziying Chen & Fang Liu & Pan Shen & Xiaogen Zhou & Yue Gao & Zhenguo Chen & Yanjie Chao & Chengyuan Wang, 2024. "A widely conserved protein Rof inhibits transcription termination factor Rho and promotes Salmonella virulence program," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47438-7
    DOI: 10.1038/s41467-024-47438-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47438-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47438-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vitaly Epshtein & Dipak Dutta & Joseph Wade & Evgeny Nudler, 2010. "An allosteric mechanism of Rho-dependent transcription termination," Nature, Nature, vol. 463(7278), pages 245-249, January.
    2. Vadim Molodtsov & Chengyuan Wang & Emre Firlar & Jason T. Kaelber & Richard H. Ebright, 2023. "Structural basis of Rho-dependent transcription termination," Nature, Nature, vol. 614(7947), pages 367-374, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily Petroni & Caroline Esnault & Daniel Tetreault & Ryan K. Dale & Gisela Storz & Philip P. Adams, 2023. "Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen Borrelia burgdorferi," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Britney Martinez & Binod K. Bharati & Vitaly Epshtein & Evgeny Nudler, 2022. "Pervasive Transcription-coupled DNA repair in E. coli," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Eunho Song & Heesoo Uhm & Palinda Ruvan Munasingha & Seungha Hwang & Yeon-Soo Seo & Jin Young Kang & Changwon Kang & Sungchul Hohng, 2022. "Rho-dependent transcription termination proceeds via three routes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47438-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.