IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4561-d292470.html
   My bibliography  Save this article

Thermoelectric Properties of Carbon Nanotubes

Author

Listed:
  • Nguyen T. Hung

    (Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
    Department of Physics, Tohoku University, Sendai 980-8578, Japan)

  • Ahmad R. T. Nugraha

    (Research Center for Physics, Indonesian Institute of Sciences (LIPI), Tangerang Selatan 15314, Indonesia)

  • Riichiro Saito

    (Department of Physics, Tohoku University, Sendai 980-8578, Japan)

Abstract

Thermoelectric (TE) material is a class of materials that can convert heat to electrical energy directly in a solid-state-device without any moving parts and that is environmentally friendly. The study and development of TE materials have grown quickly in the past decade. However, their development goes slowly by the lack of cheap TE materials with high Seebeck coefficient and good electrical conductivity. Carbon nanotubes (CNTs) are particularly attractive as TE materials because of at least three reasons: (1) CNTs possess various band gaps depending on their structure, (2) CNTs represent unique one-dimensional carbon materials which naturally satisfies the conditions of quantum confinement effect to enhance the TE efficiency and (3) CNTs provide us with a platform for developing lightweight and flexible TE devices due to their mechanical properties. The TE power factor is reported to reach 700–1000 μ W / m K 2 for both p-type and n-type CNTs when purified to contain only doped semiconducting CNT species. Therefore, CNTs are promising for a variety of TE applications in which the heat source is unlimited, such as waste heat or solar heat although their figure of merit Z T is still modest (0.05 at 300 K). In this paper, we review in detail from the basic concept of TE field to the fundamental TE properties of CNTs, as well as their applications. Furthermore, the strategies are discussed to improve the TE properties of CNTs. Finally, we give our perspectives on the tremendous potential of CNTs-based TE materials and composites.

Suggested Citation

  • Nguyen T. Hung & Ahmad R. T. Nugraha & Riichiro Saito, 2019. "Thermoelectric Properties of Carbon Nanotubes," Energies, MDPI, vol. 12(23), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4561-:d:292470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenbin Zhou & Qingxia Fan & Qiang Zhang & Le Cai & Kewei Li & Xiaogang Gu & Feng Yang & Nan Zhang & Yanchun Wang & Huaping Liu & Weiya Zhou & Sishen Xie, 2017. "High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    2. Azure D. Avery & Ben H. Zhou & Jounghee Lee & Eui-Sup Lee & Elisa M. Miller & Rachelle Ihly & Devin Wesenberg & Kevin S. Mistry & Sarah L. Guillot & Barry L. Zink & Yong-Hyun Kim & Jeffrey L. Blackbur, 2016. "Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties," Nature Energy, Nature, vol. 1(4), pages 1-9, April.
    3. Yanzhong Pei & Xiaoya Shi & Aaron LaLonde & Heng Wang & Lidong Chen & G. Jeffrey Snyder, 2011. "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, Nature, vol. 473(7345), pages 66-69, May.
    4. Allon I. Hochbaum & Renkun Chen & Raul Diaz Delgado & Wenjie Liang & Erik C. Garnett & Mark Najarian & Arun Majumdar & Peidong Yang, 2008. "Enhanced thermoelectric performance of rough silicon nanowires," Nature, Nature, vol. 451(7175), pages 163-167, January.
    5. Akram I. Boukai & Yuri Bunimovich & Jamil Tahir-Kheli & Jen-Kan Yu & William A. Goddard III & James R. Heath, 2008. "Silicon nanowires as efficient thermoelectric materials," Nature, Nature, vol. 451(7175), pages 168-171, January.
    6. Yuqiao Zhang & Bin Feng & Hiroyuki Hayashi & Cheng-Ping Chang & Yu-Miin Sheu & Isao Tanaka & Yuichi Ikuhara & Hiromichi Ohta, 2018. "Double thermoelectric power factor of a 2D electron system," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    7. Cronin B. Vining, 2001. "Semiconductors are cool," Nature, Nature, vol. 413(6856), pages 577-578, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan-Meng Liu & Xiao-Lei Shi & Ting Wu & Hao Wu & Yuanqing Mao & Tianyi Cao & De-Zhuang Wang & Wei-Di Liu & Meng Li & Qingfeng Liu & Zhi-Gang Chen, 2024. "Boosting thermoelectric performance of single-walled carbon nanotubes-based films through rational triple treatments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martín-González, Marisol & Caballero-Calero, O. & Díaz-Chao, P., 2013. "Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 288-305.
    2. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Yuto Uematsu & Takafumi Ishibe & Takaaki Mano & Akihiro Ohtake & Hideki T. Miyazaki & Takeshi Kasaya & Yoshiaki Nakamura, 2024. "Anomalous enhancement of thermoelectric power factor in multiple two-dimensional electron gas system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Sark, W.G.J.H.M. van, 2011. "Feasibility of photovoltaic - Thermoelectric hybrid modules," Applied Energy, Elsevier, vol. 88(8), pages 2785-2790, August.
    5. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    6. Zhukovsky, K.V. & Srivastava, H.M., 2017. "Analytical solutions for heat diffusion beyond Fourier law," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 423-437.
    7. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    8. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    9. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    10. Zhang, A.B. & Wang, B.L. & Pang, D.D. & He, L.W. & Lou, J. & Wang, J. & Du, J.K., 2018. "Effects of interface layers on the performance of annular thermoelectric generators," Energy, Elsevier, vol. 147(C), pages 612-620.
    11. Kria, M. & Feddi, K. & Aghoutane, N. & El-Yadri, M. & Pérez, L.M. & Laroze, D. & Dujardin, F. & Feddi, E., 2020. "Thermodynamic properties of SnO2/GaAs core/shell nanofiber," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    12. Liang, Gaowei & Zhou, Jiemin & Huang, Xuezhang, 2011. "Analytical model of parallel thermoelectric generator," Applied Energy, Elsevier, vol. 88(12), pages 5193-5199.
    13. Seunggen Yang & Kyoungah Cho & Sangsig Kim, 2020. "Enhanced Thermoelectric Characteristics of Ag 2 Se Nanoparticle Thin Films by Embedding Silicon Nanowires," Energies, MDPI, vol. 13(12), pages 1-10, June.
    14. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    15. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    16. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    17. Pan, Yuzhuo & Lin, Bihong & Chen, Jincan, 2007. "Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions," Applied Energy, Elsevier, vol. 84(9), pages 882-892, September.
    18. Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    20. Liqing Xu & Yu Xiao & Sining Wang & Bo Cui & Di Wu & Xiangdong Ding & Li-Dong Zhao, 2022. "Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4561-:d:292470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.