IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47291-8.html
   My bibliography  Save this article

Nonlinear optical diode effect in a magnetic Weyl semimetal

Author

Listed:
  • Christian Tzschaschel

    (Harvard University
    Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy)

  • Jian-Xiang Qiu

    (Harvard University)

  • Xue-Jian Gao

    (Hong Kong University of Science and Technology)

  • Hou-Chen Li

    (Harvard University)

  • Chunyu Guo

    (Max Planck Institute for the Structure and Dynamics of Matter
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Hung-Yu Yang

    (Boston College)

  • Cheng-Ping Zhang

    (Hong Kong University of Science and Technology)

  • Ying-Ming Xie

    (Hong Kong University of Science and Technology)

  • Yu-Fei Liu

    (Harvard University)

  • Anyuan Gao

    (Harvard University)

  • Damien Bérubé

    (Harvard University)

  • Thao Dinh

    (Harvard University)

  • Sheng-Chin Ho

    (Harvard University)

  • Yuqiang Fang

    (Chinese Academy of Science
    College of Chemistry and Molecular Engineering Peking University)

  • Fuqiang Huang

    (Chinese Academy of Science
    College of Chemistry and Molecular Engineering Peking University)

  • Johanna Nordlander

    (Harvard University)

  • Qiong Ma

    (Boston College
    CIFAR)

  • Fazel Tafti

    (Boston College)

  • Philip J. W. Moll

    (Max Planck Institute for the Structure and Dynamics of Matter
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Kam Tuen Law

    (Hong Kong University of Science and Technology)

  • Su-Yang Xu

    (Harvard University)

Abstract

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

Suggested Citation

  • Christian Tzschaschel & Jian-Xiang Qiu & Xue-Jian Gao & Hou-Chen Li & Chunyu Guo & Hung-Yu Yang & Cheng-Ping Zhang & Ying-Ming Xie & Yu-Fei Liu & Anyuan Gao & Damien Bérubé & Thao Dinh & Sheng-Chin Ho, 2024. "Nonlinear optical diode effect in a magnetic Weyl semimetal," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47291-8
    DOI: 10.1038/s41467-024-47291-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47291-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47291-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Negar Reiskarimian & Harish Krishnaswamy, 2016. "Magnetic-free non-reciprocity based on staggered commutation," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    2. Yiping Wang & Ioannis Petrides & Grant McNamara & Md Mofazzel Hosen & Shiming Lei & Yueh-Chun Wu & James L. Hart & Hongyan Lv & Jun Yan & Di Xiao & Judy J. Cha & Prineha Narang & Leslie M. Schoop & Ke, 2022. "Axial Higgs mode detected by quantum pathway interference in RTe3," Nature, Nature, vol. 606(7916), pages 896-901, June.
    3. Junxue Li & C. Blake Wilson & Ran Cheng & Mark Lohmann & Marzieh Kavand & Wei Yuan & Mohammed Aldosary & Nikolay Agladze & Peng Wei & Mark S. Sherwin & Jing Shi, 2020. "Spin current from sub-terahertz-generated antiferromagnetic magnons," Nature, Nature, vol. 578(7793), pages 70-74, February.
    4. Yoshinori Tokura & Naoto Nagaosa, 2018. "Nonreciprocal responses from non-centrosymmetric quantum materials," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Akatsuka & Sebastian Esser & Shun Okumura & Ryota Yambe & Rinsuke Yamada & Moritz M. Hirschmann & Seno Aji & Jonathan S. White & Shang Gao & Yoshichika Onuki & Taka-hisa Arima & Taro Nakajima & M, 2024. "Non-coplanar helimagnetism in the layered van-der-Waals metal DyTe3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Hidetoshi Masuda & Takeshi Seki & Jun-ichiro Ohe & Yoichi Nii & Hiroto Masuda & Koki Takanashi & Yoshinori Onose, 2024. "Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Farhan Nur Kholid & Dominik Hamara & Ahmad Faisal Bin Hamdan & Guillermo Nava Antonio & Richard Bowen & Dorothée Petit & Russell Cowburn & Roman V. Pisarev & Davide Bossini & Joseph Barker & Chiara Ci, 2023. "The importance of the interface for picosecond spin pumping in antiferromagnet-heavy metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Pavlo Makushko & Tobias Kosub & Oleksandr V. Pylypovskyi & Natascha Hedrich & Jiang Li & Alexej Pashkin & Stanislav Avdoshenko & René Hübner & Fabian Ganss & Daniel Wolf & Axel Lubk & Maciej Oskar Lie, 2022. "Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Lin Huang & Liyang Liao & Hongsong Qiu & Xianzhe Chen & Hua Bai & Lei Han & Yongjian Zhou & Yichen Su & Zhiyuan Zhou & Feng Pan & Biaobing Jin & Cheng Song, 2024. "Antiferromagnetic magnonic charge current generation via ultrafast optical excitation," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    9. Zhenya Zhang & Fumiya Sekiguchi & Takahiro Moriyama & Shunsuke C. Furuya & Masahiro Sato & Takuya Satoh & Yu Mukai & Koichiro Tanaka & Takafumi Yamamoto & Hiroshi Kageyama & Yoshihiko Kanemitsu & Hide, 2023. "Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. James Jun He & Yukio Tanaka & Naoto Nagaosa, 2023. "The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    11. Lin Huang & Yanzhang Cao & Hongsong Qiu & Hua Bai & Liyang Liao & Chong Chen & Lei Han & Feng Pan & Biaobing Jin & Cheng Song, 2024. "Terahertz oscillation driven by optical spin-orbit torque," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Hao Chen & Arpit Arora & Justin C. W. Song & Kian Ping Loh, 2023. "Gate-tunable anomalous Hall effect in Bernal tetralayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    13. Hao Wu & Hantao Zhang & Baomin Wang & Felix Groß & Chao-Yao Yang & Gengfei Li & Chenyang Guo & Haoran He & Kin Wong & Di Wu & Xiufeng Han & Chih-Huang Lai & Joachim Gräfe & Ran Cheng & Kang L. Wang, 2022. "Current-induced Néel order switching facilitated by magnetic phase transition," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. S. Iguchi & R. Masuda & S. Seki & Y. Tokura & Y. Takahashi, 2021. "Enhanced gyrotropic birefringence and natural optical activity on electromagnon resonance in a helimagnet," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    15. Makiko Ogino & Yoshihiro Okamura & Kosuke Fujiwara & Takahiro Morimoto & Naoto Nagaosa & Yoshio Kaneko & Yoshinori Tokura & Youtarou Takahashi, 2024. "Terahertz photon to dc current conversion via magnetic excitations of multiferroics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Yuwaraj Adhikari & Tianhan Liu & Hailong Wang & Zhenqi Hua & Haoyang Liu & Eric Lochner & Pedro Schlottmann & Binghai Yan & Jianhua Zhao & Peng Xiong, 2023. "Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Zhenyu Sun & Yueqi Su & Aomiao Zhi & Zhicheng Gao & Xu Han & Kang Wu & Lihong Bao & Yuan Huang & Youguo Shi & Xuedong Bai & Peng Cheng & Lan Chen & Kehui Wu & Xuezeng Tian & Changzheng Wu & Baojie Fen, 2024. "Evidence for multiferroicity in single-layer CuCrSe2," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Geert L. J. A. Rikken & Narcis Avarvari, 2022. "Dielectric magnetochiral anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    19. Lukas Powalla & Jonas Kiemle & Elio J. König & Andreas P. Schnyder & Johannes Knolle & Klaus Kern & Alexander Holleitner & Christoph Kastl & Marko Burghard, 2022. "Berry curvature-induced local spin polarisation in gated graphene/WTe2 heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47291-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.