IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47204-9.html
   My bibliography  Save this article

Integration of pathologic characteristics, genetic risk and lifestyle exposure for colorectal cancer survival assessment

Author

Listed:
  • Junyi Xin

    (Nanjing Medical University
    Nanjing Medical University
    Nanjing Medical University)

  • Dongying Gu

    (Nanjing Medical University)

  • Shuwei Li

    (Nanjing Medical University
    Nanjing Medical University)

  • Sangni Qian

    (Zhejiang University School of Medicine
    The Second Affiliated Hospital, Zhejiang University School of Medicine)

  • Yifei Cheng

    (Nanjing Medical University
    Nanjing Medical University)

  • Wei Shao

    (Nanjing Medical University
    Nanjing Medical University)

  • Shuai Ben

    (Nanjing Medical University
    Nanjing Medical University)

  • Silu Chen

    (Nanjing Medical University
    Nanjing Medical University)

  • Linjun Zhu

    (The First Affiliated Hospital of Nanjing Medical University)

  • Mingjuan Jin

    (Zhejiang University School of Medicine
    The Second Affiliated Hospital, Zhejiang University School of Medicine)

  • Kun Chen

    (Zhejiang University School of Medicine
    The Second Affiliated Hospital, Zhejiang University School of Medicine)

  • Zhibin Hu

    (Nanjing Medical University)

  • Zhengdong Zhang

    (Nanjing Medical University
    Nanjing Medical University)

  • Mulong Du

    (Nanjing Medical University)

  • Hongbing Shen

    (Nanjing Medical University)

  • Meilin Wang

    (Nanjing Medical University
    Nanjing Medical University
    Nanjing Medical University)

Abstract

The development of an effective survival prediction tool is key for reducing colorectal cancer mortality. Here, we apply a three-stage study to devise a polygenic prognostic score (PPS) for stratifying colorectal cancer overall survival. Leveraging two cohorts of 3703 patients, we first perform a genome-wide survival association analysis to develop eight candidate PPSs. Further using an independent cohort with 470 patients, we identify the 287 variants-derived PPS (i.e., PPS287) achieving an optimal prediction performance [hazard ratio (HR) per SD = 1.99, P = 1.76 × 10−8], accompanied by additional tests in two external cohorts, with HRs per SD of 1.90 (P = 3.21 × 10−14; 543 patients) and 1.80 (P = 1.11 × 10−9; 713 patients). Notably, the detrimental impact of pathologic characteristics and genetic risk could be attenuated by a healthy lifestyle, yielding a 7.62% improvement in the 5-year overall survival rate. Therefore, our findings demonstrate the integrated contribution of pathologic characteristics, germline variants, and lifestyle exposure to the prognosis of colorectal cancer patients.

Suggested Citation

  • Junyi Xin & Dongying Gu & Shuwei Li & Sangni Qian & Yifei Cheng & Wei Shao & Shuai Ben & Silu Chen & Linjun Zhu & Mingjuan Jin & Kun Chen & Zhibin Hu & Zhengdong Zhang & Mulong Du & Hongbing Shen & Me, 2024. "Integration of pathologic characteristics, genetic risk and lifestyle exposure for colorectal cancer survival assessment," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47204-9
    DOI: 10.1038/s41467-024-47204-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47204-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47204-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Philip Kostov, 2010. "Do Buyers’ Characteristics and Personal Relationships Affect Agricultural Land Prices?," Land Economics, University of Wisconsin Press, vol. 86(1), pages 48-65.
    3. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    4. Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
    5. Stefanie Hieke & Axel Benner & Richard F Schlenk & Martin Schumacher & Lars Bullinger & Harald Binder, 2016. "Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
    6. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    7. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    8. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    9. Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
    10. Colin Griesbach & Andreas Mayr & Elisabeth Bergherr, 2023. "Variable Selection and Allocation in Joint Models via Gradient Boosting Techniques," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    11. Zheng, Shurong, 2008. "Selection of components and degrees of smoothing via lasso in high dimensional nonparametric additive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 164-175, September.
    12. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.
    13. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    14. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    15. Leitenstorfer, Florian & Tutz, Gerhard, 2007. "Knot selection by boosting techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4605-4621, May.
    16. Riccardo De Bin, 2016. "Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost," Computational Statistics, Springer, vol. 31(2), pages 513-531, June.
    17. Sariyar Murat & Schumacher Martin & Binder Harald, 2014. "A boosting approach for adapting the sparsity of risk prediction signatures based on different molecular levels," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 343-357, June.
    18. Kaixu Yang & Tapabrata Maiti, 2022. "Ultrahigh‐dimensional generalized additive model: Unified theory and methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 917-942, September.
    19. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
    20. Faisal Zahid & Gerhard Tutz, 2013. "Ridge estimation for multinomial logit models with symmetric side constraints," Computational Statistics, Springer, vol. 28(3), pages 1017-1034, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47204-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.