IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46991-5.html
   My bibliography  Save this article

Meta-analysis shows the impacts of ecological restoration on greenhouse gas emissions

Author

Listed:
  • Tiehu He

    (Chinese Academy of Sciences
    the Chinese Academy of Sciences & Hubei Province
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Weixin Ding

    (Chinese Academy of Sciences)

  • Xiaoli Cheng

    (Yunnan University)

  • Yanjiang Cai

    (Zhejiang A&F University)

  • Yulong Zhang

    (USDA Forest Service)

  • Huijuan Xia

    (Chinese Academy of Sciences
    the Chinese Academy of Sciences & Hubei Province)

  • Xia Wang

    (Chinese Academy of Sciences
    the Chinese Academy of Sciences & Hubei Province)

  • Jiehao Zhang

    (Chinese Academy of Sciences
    the Chinese Academy of Sciences & Hubei Province)

  • Kerong Zhang

    (Chinese Academy of Sciences
    the Chinese Academy of Sciences & Hubei Province
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Quanfa Zhang

    (Chinese Academy of Sciences
    the Chinese Academy of Sciences & Hubei Province)

Abstract

International initiatives set ambitious targets for ecological restoration, which is considered a promising greenhouse gas mitigation strategy. Here, we conduct a meta-analysis to quantify the impacts of ecological restoration on greenhouse gas emissions using a dataset compiled from 253 articles. Our findings reveal that forest and grassland restoration increase CH4 uptake by 90.0% and 30.8%, respectively, mainly due to changes in soil properties. Conversely, wetland restoration increases CH4 emissions by 544.4%, primarily attributable to elevated water table depth. Forest and grassland restoration have no significant effect on N2O emissions, while wetland restoration reduces N2O emissions by 68.6%. Wetland restoration enhances net CO2 uptake, and the transition from net CO2 sources to net sinks takes approximately 4 years following restoration. The net ecosystem CO2 exchange of the restored forests decreases with restoration age, and the transition from net CO2 sources to net sinks takes about 3-5 years for afforestation and reforestation sites, and 6-13 years for clear-cutting and post-fire sites. Overall, forest, grassland and wetland restoration decrease the global warming potentials by 327.7%, 157.7% and 62.0% compared with their paired control ecosystems, respectively. Our findings suggest that afforestation, reforestation, rewetting drained wetlands, and restoring degraded grasslands through grazing exclusion, reducing grazing intensity, or converting croplands to grasslands can effectively mitigate greenhouse gas emissions.

Suggested Citation

  • Tiehu He & Weixin Ding & Xiaoli Cheng & Yanjiang Cai & Yulong Zhang & Huijuan Xia & Xia Wang & Jiehao Zhang & Kerong Zhang & Quanfa Zhang, 2024. "Meta-analysis shows the impacts of ecological restoration on greenhouse gas emissions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46991-5
    DOI: 10.1038/s41467-024-46991-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46991-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46991-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Junji Yuan & Jian Xiang & Deyan Liu & Hojeong Kang & Tiehu He & Sunghyun Kim & Yongxin Lin & Chris Freeman & Weixin Ding, 2019. "Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture," Nature Climate Change, Nature, vol. 9(4), pages 318-322, April.
    2. D. S. Schimel & J. I. House & K. A. Hibbard & P. Bousquet & P. Ciais & P. Peylin & B. H. Braswell & M. J. Apps & D. Baker & A. Bondeau & J. Canadell & G. Churkina & W. Cramer & A. S. Denning & C. B. F, 2001. "Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems," Nature, Nature, vol. 414(6860), pages 169-172, November.
    3. J. Leifeld & L. Menichetti, 2018. "The underappreciated potential of peatlands in global climate change mitigation strategies," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. C. D. Evans & M. Peacock & A. J. Baird & R. R. E. Artz & A. Burden & N. Callaghan & P. J. Chapman & H. M. Cooper & M. Coyle & E. Craig & A. Cumming & S. Dixon & V. Gauci & R. P. Grayson & C. Helfter &, 2021. "Overriding water table control on managed peatland greenhouse gas emissions," Nature, Nature, vol. 593(7860), pages 548-552, May.
    5. Nancy L. Harris & David A. Gibbs & Alessandro Baccini & Richard A. Birdsey & Sytze Bruin & Mary Farina & Lola Fatoyinbo & Matthew C. Hansen & Martin Herold & Richard A. Houghton & Peter V. Potapov & D, 2021. "Global maps of twenty-first century forest carbon fluxes," Nature Climate Change, Nature, vol. 11(3), pages 234-240, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Shang & Mingxu Liu & Yu Song & Xingjie Lu & Qiang Zhang & Hitoshi Matsui & Lingli Liu & Aijun Ding & Xin Huang & Xuejun Liu & Junji Cao & Zifa Wang & Yongjiu Dai & Ling Kang & Xuhui Cai & Hongshe, 2024. "Substantial nitrogen abatement accompanying decarbonization suppresses terrestrial carbon sinks in China," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Sirin & Maria Medvedeva & Vladimir Korotkov & Victor Itkin & Tatiana Minayeva & Danil Ilyasov & Gennady Suvorov & Hans Joosten, 2021. "Addressing Peatland Rewetting in Russian Federation Climate Reporting," Land, MDPI, vol. 10(11), pages 1-17, November.
    2. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    4. Sari, Dwi Amalia & Margules, Chris & Lim, Han She & Widyatmaka, Febrio & Sayer, Jeffrey & Dale, Allan & Macgregor, Colin, 2021. "Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia," Land Use Policy, Elsevier, vol. 105(C).
    5. Gao, Ming, 2023. "The impacts of carbon trading policy on China's low-carbon economy based on county-level perspectives," Energy Policy, Elsevier, vol. 175(C).
    6. Michael Manton & Evaldas Makrickas & Piotr Banaszuk & Aleksander Kołos & Andrzej Kamocki & Mateusz Grygoruk & Marta Stachowicz & Leonas Jarašius & Nerijus Zableckis & Jūratė Sendžikaitė & Jan Peters &, 2021. "Assessment and Spatial Planning for Peatland Conservation and Restoration: Europe’s Trans-Border Neman River Basin as a Case Study," Land, MDPI, vol. 10(2), pages 1-27, February.
    7. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    8. L. Duncanson & M. Liang & V. Leitold & J. Armston & S. M. Krishna Moorthy & R. Dubayah & S. Costedoat & B. J. Enquist & L. Fatoyinbo & S. J. Goetz & M. Gonzalez-Roglich & C. Merow & P. R. Roehrdanz & , 2023. "The effectiveness of global protected areas for climate change mitigation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Kim, Sophanarith & Phat, Nophea Kim & Koike, Masao & Hayashi, Hiromichi, 2006. "Estimating actual and potential government revenues from timber harvesting in Cambodia," Forest Policy and Economics, Elsevier, vol. 8(6), pages 625-635, August.
    10. Jorge F. Perez‐Quezada & Nicanor Z. Saliendra & William E. Emmerich & Emilio A. Laca, 2007. "Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 213-230, January.
    11. Konstantinos Ioannou, 2023. "On the Identification of Agroforestry Application Areas Using Object-Oriented Programming," Agriculture, MDPI, vol. 13(1), pages 1-14, January.
    12. Dietz, Julia & Treydte, Anna Christina & Lippe, Melvin, 2023. "Exploring the future of Kafue National Park, Zambia: Scenario-based land use and land cover modelling to understand drivers and impacts of deforestation," Land Use Policy, Elsevier, vol. 126(C).
    13. Chi Zhang & Shaohong Wu & Yu Deng & Jieming Chou, 2021. "How the Updated Earth System Models Project Terrestrial Gross Primary Productivity in China under 1.5 and 2 °C Global Warming," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    14. Dongfan Xu & Jialong Zhang & Rui Bao & Yi Liao & Dongyang Han & Qianwei Liu & Tao Cheng, 2021. "Temporal and Spatial Variation of Aboveground Biomass of Pinus densata and Its Drivers in Shangri-La, CHINA," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    15. Changsong Oh, 2024. "Characteristics and Reduction of Carbon Dioxide (CO 2 ) Emissions during the Construction of Urban Parks in South Korea," Sustainability, MDPI, vol. 16(8), pages 1-15, April.
    16. Elena A. Mikhailova & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2021. "Soil Diversity (Pedodiversity) and Ecosystem Services," Land, MDPI, vol. 10(3), pages 1-34, March.
    17. Xuting Yang & Wanqiang Yao & Pengfei Li & Jinfei Hu & Hooman Latifi & Li Kang & Ningjing Wang & Dingming Zhang, 2022. "Changes of SOC Content in China’s Shendong Coal Mining Area during 1990–2020 Investigated Using Remote Sensing Techniques," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    18. Guo, Ru & Zhao, Yaru & Shi, Yu & Li, Fengting & Hu, Jing & Yang, Haizhen, 2017. "Low carbon development and local sustainability from a carbon balance perspective," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 270-279.
    19. Angela Maria D’Uggento & Alfonso Piscitelli & Nunziata Ribecco & Germana Scepi, 2023. "Perceived climate change risk and global green activism among young people," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1167-1195, October.
    20. Rhymes, Jennifer M. & Arnott, David & Chadwick, David R. & Evans, Christopher D. & Jones, David L., 2023. "Assessing the effectiveness, practicality and cost effectiveness of mitigation measures to reduce greenhouse gas emissions from intensively cultivated peatlands," Land Use Policy, Elsevier, vol. 134(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46991-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.