IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46985-3.html
   My bibliography  Save this article

Bioorthogonal photocatalytic proximity labeling in primary living samples

Author

Listed:
  • Ziqi Liu

    (Peking University
    Peking University)

  • Fuhu Guo

    (Peking University)

  • Yufan Zhu

    (Peking University)

  • Shengnan Qin

    (Peking University)

  • Yuchen Hou

    (Peking University)

  • Haotian Guo

    (Peking University)

  • Feng Lin

    (Peking University)

  • Peng R. Chen

    (Peking University
    Peking University)

  • Xinyuan Fan

    (Peking University
    Peking University)

Abstract

In situ profiling of subcellular proteomics in primary living systems, such as native tissues or clinic samples, is crucial for understanding life processes and diseases, yet challenging due to methodological obstacles. Here we report CAT-S, a bioorthogonal photocatalytic chemistry-enabled proximity labeling method, that expands proximity labeling to a wide range of primary living samples for in situ profiling of mitochondrial proteomes. Powered by our thioQM labeling warhead development and targeted bioorthogonal photocatalytic chemistry, CAT-S enables the labeling of mitochondrial proteins in living cells with high efficiency and specificity. We apply CAT-S to diverse cell cultures, dissociated mouse tissues as well as primary T cells from human blood, portraying the native-state mitochondrial proteomic characteristics, and unveiled hidden mitochondrial proteins (PTPN1, SLC35A4 uORF, and TRABD). Furthermore, CAT-S allows quantification of proteomic perturbations on dysfunctional tissues, exampled by diabetic mouse kidneys, revealing the alterations of lipid metabolism that may drive disease progression. Given the advantages of non-genetic operation, generality, and spatiotemporal resolution, CAT-S may open exciting avenues for subcellular proteomic investigations of primary samples that are otherwise inaccessible.

Suggested Citation

  • Ziqi Liu & Fuhu Guo & Yufan Zhu & Shengnan Qin & Yuchen Hou & Haotian Guo & Feng Lin & Peng R. Chen & Xinyuan Fan, 2024. "Bioorthogonal photocatalytic proximity labeling in primary living samples," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46985-3
    DOI: 10.1038/s41467-024-46985-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46985-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46985-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Toby Mathieson & Holger Franken & Jan Kosinski & Nils Kurzawa & Nico Zinn & Gavain Sweetman & Daniel Poeckel & Vikram S. Ratnu & Maike Schramm & Isabelle Becher & Michael Steidel & Kyung-Min Noh & Gio, 2018. "Systematic analysis of protein turnover in primary cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Ciaran P. Seath & Antony J. Burton & Xuemeng Sun & Gihoon Lee & Ralph E. Kleiner & David W. C. MacMillan & Tom W. Muir, 2023. "Tracking chromatin state changes using nanoscale photo-proximity labelling," Nature, Nature, vol. 616(7957), pages 574-580, April.
    3. Michael T. Lin & M. Flint Beal, 2006. "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases," Nature, Nature, vol. 443(7113), pages 787-795, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Roman Vetter & Dagmar Iber, 2022. "Precision of morphogen gradients in neural tube development," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Simone Sanzo & Katrin Spengler & Anja Leheis & Joanna M. Kirkpatrick & Theresa L. Rändler & Tim Baldensperger & Therese Dau & Christian Henning & Luca Parca & Christian Marx & Zhao-Qi Wang & Marcus A., 2021. "Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    4. Henrik M. Hammarén & Eva-Maria Geissen & Clement M. Potel & Martin Beck & Mikhail M. Savitski, 2022. "Protein-Peptide Turnover Profiling reveals the order of PTM addition and removal during protein maturation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Raúl F. Pérez & Patricia Tezanos & Alfonso Peñarroya & Alejandro González-Ramón & Rocío G. Urdinguio & Javier Gancedo-Verdejo & Juan Ramón Tejedor & Pablo Santamarina-Ojeda & Juan José Alba-Linares & , 2024. "A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    6. Jinjian Huang & Rong Yang & Jiao Jiao & Ze Li & Penghui Wang & Ye Liu & Sicheng Li & Canwen Chen & Zongan Li & Guiwen Qu & Kang Chen & Xiuwen Wu & Bo Chi & Jianan Ren, 2023. "A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Yueli Yang & Xueyang Bai & Fanghao Hu, 2024. "Photoswitchable polyynes for multiplexed stimulated Raman scattering microscopy with reversible light control," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Yun Soo Hong & Sergiu Pasca & Wen Shi & Daniela Puiu & Nicole J. Lake & Monkol Lek & Meng Ru & Megan L. Grove & Anna Prizment & Corinne E. Joshu & Elizabeth A. Platz & Eliseo Guallar & Dan E. Arking &, 2024. "Mitochondrial heteroplasmy improves risk prediction for myeloid neoplasms," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Cesare Granata & Nikeisha J. Caruana & Javier Botella & Nicholas A. Jamnick & Kevin Huynh & Jujiao Kuang & Hans A. Janssen & Boris Reljic & Natalie A. Mellett & Adrienne Laskowski & Tegan L. Stait & A, 2021. "High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    10. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Ting Huang & Ruyi Lin & Yuanqin Su & Hao Sun & Xixi Zheng & Jinsong Zhang & Xiaoyan Lu & Baiqin Zhao & Xinchi Jiang & Lingling Huang & Ni Li & Jing Shi & Xiaohui Fan & Donghang Xu & Tianyuan Zhang & J, 2023. "Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Minfeng Huo & Zhimin Tang & Liying Wang & Linlin Zhang & Haiyan Guo & Yu Chen & Ping Gu & Jianlin Shi, 2022. "Magnesium hexacyanoferrate nanocatalysts attenuate chemodrug-induced cardiotoxicity through an anti-apoptosis mechanism driven by modulation of ferrous iron," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Ying Shao & Zhongli Chen & Lingling Wu, 2019. "Oxidative Stress Effects of Soluble Sulfide on Human Hepatocyte Cell Line LO2," IJERPH, MDPI, vol. 16(9), pages 1-11, May.
    14. Peng Liao & Long Chen & Hao Zhou & Jiong Mei & Ziming Chen & Bingqi Wang & Jerry Q. Feng & Guangyi Li & Sihan Tong & Jian Zhou & Siyuan Zhu & Yu Qian & Yao Zong & Weiguo Zou & Hao Li & Wenkan Zhang & , 2024. "Osteocyte mitochondria regulate angiogenesis of transcortical vessels," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Cheng-Jie Zhou & Xing-Yue Wang & Yan-Hua Dong & Dong-Hui Wang & Zhe Han & Xiao-Jie Zhang & Qing-Yuan Sun & John Carroll & Cheng-Guang Liang, 2022. "CENP-F-dependent DRP1 function regulates APC/C activity during oocyte meiosis I," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Feng Yuan & Yi Li & Xinyue Zhou & Peiyuan Meng & Peng Zou, 2023. "Spatially resolved mapping of proteome turnover dynamics with subcellular precision," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Daniel P. Bondeson & Zachary Mullin-Bernstein & Sydney Oliver & Thomas A. Skipper & Thomas C. Atack & Nolan Bick & Meilani Ching & Andrew A. Guirguis & Jason Kwon & Carly Langan & Dylan Millson & Bren, 2022. "Systematic profiling of conditional degron tag technologies for target validation studies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Jana Zecha & Wassim Gabriel & Ria Spallek & Yun-Chien Chang & Julia Mergner & Mathias Wilhelm & Florian Bassermann & Bernhard Kuster, 2022. "Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Pankaj C. Patel & Marcus T. Wolfe, 2021. "Under Pressure: The Effect of Antioxidants on Health Consequences Related to Oxidative Stress," Entrepreneurship Theory and Practice, , vol. 45(1), pages 211-241, January.
    20. Hasan Vatandaslar & Aitor Garzia & Cindy Meyer & Svenja Godbersen & Laura T. L. Brandt & Esther Griesbach & Jeffrey A. Chao & Thomas Tuschl & Markus Stoffel, 2023. "In vivo PAR-CLIP (viP-CLIP) of liver TIAL1 unveils targets regulating cholesterol synthesis and secretion," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46985-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.