IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46941-1.html
   My bibliography  Save this article

Developmental timing in plants

Author

Listed:
  • Enrico Coen

    (Norwich Research Park)

  • Przemyslaw Prusinkiewicz

    (University of Calgary)

Abstract

Plants exhibit reproducible timing of developmental events at multiple scales, from switches in cell identity to maturation of the whole plant. Control of developmental timing likely evolved for similar reasons that humans invented clocks: to coordinate events. However, whereas clocks are designed to run independently of conditions, plant developmental timing is strongly dependent on growth and environment. Using simplified models to convey key concepts, we review how growth-dependent and inherent timing mechanisms interact with the environment to control cyclical and progressive developmental transitions in plants.

Suggested Citation

  • Enrico Coen & Przemyslaw Prusinkiewicz, 2024. "Developmental timing in plants," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46941-1
    DOI: 10.1038/s41467-024-46941-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46941-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46941-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paula Suárez-López & Kay Wheatley & Frances Robson & Hitoshi Onouchi & Federico Valverde & George Coupland, 2001. "CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis," Nature, Nature, vol. 410(6832), pages 1116-1120, April.
    2. Yusheng Zhao & Rea L. Antoniou-Kourounioti & Grant Calder & Caroline Dean & Martin Howard, 2020. "Temperature-dependent growth contributes to long-term cold sensing," Nature, Nature, vol. 583(7818), pages 825-829, July.
    3. Angharad R. Jones & Manuel Forero-Vargas & Simon P. Withers & Richard S. Smith & Jan Traas & Walter Dewitte & James A. H. Murray, 2017. "Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diederik S. Laman Trip & Théo Maire & Hyun Youk, 2022. "Slowest possible replicative life at frigid temperatures for yeast," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Filippos Bantis & Anna Gkotzamani & Christodoulos Dangitsis & Athanasios Koukounaras, 2022. "A Light Recipe including Far-Red Wavelength during Healing of Grafted Watermelon Seedlings Enhances the Floral Development and Yield Earliness," Agriculture, MDPI, vol. 12(7), pages 1-10, July.
    3. Musa Al Murad & Kaukab Razi & Byoung Ryong Jeong & Prakash Muthu Arjuna Samy & Sowbiya Muneer, 2021. "Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    4. Welch, S.M. & Roe, J.L. & Das, S. & Dong, Z. & He, R. & Kirkham, M.B., 2005. "Merging genomic control networks and soil-plant-atmosphere-continuum models," Agricultural Systems, Elsevier, vol. 86(3), pages 243-274, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46941-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.