IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46721-x.html
   My bibliography  Save this article

Targeted sampling of natural product space to identify bioactive natural product-like polyketide macrolides

Author

Listed:
  • Darryl M. Wilson

    (Simon Fraser University)

  • Daniel J. Driedger

    (Simon Fraser University)

  • Dennis Y. Liu

    (Simon Fraser University)

  • Sandra Keerthisinghe

    (Simon Fraser University)

  • Adrian Hermann

    (F. Hoffmann-La Roche Ltd)

  • Christoph Bieniossek

    (F. Hoffmann-La Roche Ltd)

  • Roger G. Linington

    (Simon Fraser University
    Simon Fraser University)

  • Robert A. Britton

    (Simon Fraser University)

Abstract

Polyketide or polyketide-like macrolides (pMLs) continue to serve as a source of inspiration for drug discovery. However, their inherent structural and stereochemical complexity challenges efforts to explore related regions of chemical space more broadly. Here, we report a strategy termed the Targeted Sampling of Natural Product space (TSNaP) that is designed to identify and assess regions of chemical space bounded by this important class of molecules. Using TSNaP, a family of tetrahydrofuran-containing pMLs are computationally assembled from pML inspired building blocks to provide a large collection of natural product-like virtual pMLs. By scoring functional group and volumetric overlap against their natural counterparts, a collection of compounds are prioritized for targeted synthesis. Using a modular and stereoselective synthetic approach, a library of polyketide-like macrolides are prepared to sample these unpopulated regions of pML chemical space. Validation of this TSNaP approach by screening this library against a panel of whole-cell biological assays, reveals hit rates exceeding those typically encountered in small molecule libraries. This study suggests that the TSNaP approach may be more broadly useful for the design of improved chemical libraries for drug discovery.

Suggested Citation

  • Darryl M. Wilson & Daniel J. Driedger & Dennis Y. Liu & Sandra Keerthisinghe & Adrian Hermann & Christoph Bieniossek & Roger G. Linington & Robert A. Britton, 2024. "Targeted sampling of natural product space to identify bioactive natural product-like polyketide macrolides," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46721-x
    DOI: 10.1038/s41467-024-46721-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46721-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46721-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian B. Seiple & Ziyang Zhang & Pavol Jakubec & Audrey Langlois-Mercier & Peter M. Wright & Daniel T. Hog & Kazuo Yabu & Senkara Rao Allu & Takehiro Fukuzaki & Peter N. Carlsen & Yoshiaki Kitamura & Xi, 2016. "A platform for the discovery of new macrolide antibiotics," Nature, Nature, vol. 533(7603), pages 338-345, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes E. L. C. & Novais J. S. & Silva A. C. J. A. & Guerra L. R. & Castro H. C., 2017. "The Future is Still Ahead: Methodologies for Discovering New Antimicrobials within the World Biodiversity," Journal of Biotechnology Research, Academic Research Publishing Group, vol. 3(1), pages 1-9, 01-2017.
    2. Chih-Wei Chen & Nadja Leimer & Egor A. Syroegin & Clémence Dunand & Zackery P. Bulman & Kim Lewis & Yury S. Polikanov & Maxim S. Svetlov, 2023. "Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Xiaokang Lv & Fen Su & Hongyan Long & Fengfei Lu & Yukun Zeng & Minghong Liao & Fengrui Che & Xingxing Wu & Yonggui Robin Chi, 2024. "Carbene organic catalytic planar enantioselective macrolactonization," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Sebastián Serna-Loaiza & Angela Miltner & Martin Miltner & Anton Friedl, 2019. "A Review on the Feedstocks for the Sustainable Production of Bioactive Compounds in Biorefineries," Sustainability, MDPI, vol. 11(23), pages 1-24, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46721-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.