IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46323-7.html
   My bibliography  Save this article

3D-integrated multilayered physical reservoir array for learning and forecasting time-series information

Author

Listed:
  • Sanghyeon Choi

    (Korea University
    University of Southern California
    University of California)

  • Jaeho Shin

    (Korea University
    Rice University)

  • Gwanyeong Park

    (Korea University)

  • Jung Sun Eo

    (Korea University)

  • Jingon Jang

    (Korea University
    Kwangwoon University)

  • J. Joshua Yang

    (University of Southern California)

  • Gunuk Wang

    (Korea University
    Korea University
    Center for Neuromorphic Engineering, Korea Institute of Science and Technology)

Abstract

A wide reservoir computing system is an advanced architecture composed of multiple reservoir layers in parallel, which enables more complex and diverse internal dynamics for multiple time-series information processing. However, its hardware implementation has not yet been realized due to the lack of a high-performance physical reservoir and the complexity of fabricating multiple stacks. Here, we achieve a proof-of-principle demonstration of such hardware made of a multilayered three-dimensional stacked 3 × 10 × 10 tungsten oxide memristive crossbar array, with which we further realize a wide physical reservoir computing for efficient learning and forecasting of multiple time-series data. Because a three-layer structure allows the seamless and effective extraction of intricate three-dimensional local features produced by various temporal inputs, it can readily outperform two-dimensional based approaches extensively studied previously. Our demonstration paves the way for wide physical reservoir computing systems capable of efficiently processing multiple dynamic time-series information.

Suggested Citation

  • Sanghyeon Choi & Jaeho Shin & Gwanyeong Park & Jung Sun Eo & Jingon Jang & J. Joshua Yang & Gunuk Wang, 2024. "3D-integrated multilayered physical reservoir array for learning and forecasting time-series information," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46323-7
    DOI: 10.1038/s41467-024-46323-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46323-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46323-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Du & Fuxi Cai & Mohammed A. Zidan & Wen Ma & Seung Hwan Lee & Wei D. Lu, 2017. "Reservoir computing using dynamic memristors for temporal information processing," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Kanghyeok Jeon & Jeeson Kim & Jin Joo Ryu & Seung-Jong Yoo & Choongseok Song & Min Kyu Yang & Doo Seok Jeong & Gun Hwan Kim, 2021. "Self-rectifying resistive memory in passive crossbar arrays," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Can Li & Lili Han & Hao Jiang & Moon-Hyung Jang & Peng Lin & Qing Wu & Mark Barnell & J. Joshua Yang & Huolin L. Xin & Qiangfei Xia, 2017. "Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    4. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    5. See-On Park & Hakcheon Jeong & Jongyong Park & Jongmin Bae & Shinhyun Choi, 2022. "Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Xiahui Yao & Konstantin Klyukin & Wenjie Lu & Murat Onen & Seungchan Ryu & Dongha Kim & Nicolas Emond & Iradwikanari Waluyo & Adrian Hunt & Jesús A. del Alamo & Ju Li & Bilge Yildiz, 2020. "Protonic solid-state electrochemical synapse for physical neural networks," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Yanan Zhong & Jianshi Tang & Xinyi Li & Bin Gao & He Qian & Huaqiang Wu, 2021. "Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jangsaeng Kim & Eun Chan Park & Wonjun Shin & Ryun-Han Koo & Chang-Hyeon Han & He Young Kang & Tae Gyu Yang & Youngin Goh & Kilho Lee & Daewon Ha & Suraj S. Cheema & Jae Kyeong Jeong & Daewoong Kwon, 2024. "Analog reservoir computing via ferroelectric mixed phase boundary transistors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. See-On Park & Hakcheon Jeong & Jongyong Park & Jongmin Bae & Shinhyun Choi, 2022. "Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Choi, Woo Sik & Kim, Donguk & Yang, Tae Jun & Chae, Inseok & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Electrode-dependent electrical switching characteristics of InGaZnO memristor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Changsong Gao & Di Liu & Chenhui Xu & Weidong Xie & Xianghong Zhang & Junhua Bai & Zhixian Lin & Cheng Zhang & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Yanming Liu & He Tian & Fan Wu & Anhan Liu & Yihao Li & Hao Sun & Mario Lanza & Tian-Ling Ren, 2023. "Cellular automata imbedded memristor-based recirculated logic in-memory computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Ali Momeni & Romain Fleury, 2022. "Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
    16. Fan Zhang & Yang Zhang & Linglong Li & Xing Mou & Huining Peng & Shengchun Shen & Meng Wang & Kunhong Xiao & Shuai-Hua Ji & Di Yi & Tianxiang Nan & Jianshi Tang & Pu Yu, 2023. "Nanoscale multistate resistive switching in WO3 through scanning probe induced proton evolution," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    18. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Wen Zhang & Jing Li & Yunhao Chen & Yang Li, 2019. "A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4201-4214, September.
    20. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46323-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.