IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46190-2.html
   My bibliography  Save this article

Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice

Author

Listed:
  • Ani Chi

    (Sun Yat-sen University
    South China University of Technology
    The First Affiliated Hospital of Sun Yat-sen University)

  • Bicheng Yang

    (Sun Yat-sen University)

  • Hao Dai

    (South China University of Technology)

  • Xinyu Li

    (Sun Yat-sen University)

  • Jiahui Mo

    (Sun Yat-sen University)

  • Yong Gao

    (The First Affiliated Hospital of Sun Yat-sen University)

  • Zhihong Chen

    (Sun Yat-sen University)

  • Xin Feng

    (Sun Yat-sen University)

  • Menghui Ma

    (Sun Yat-sen University)

  • Yanqing Li

    (Sun Yat-sen University)

  • Chao Yang

    (South China University of Technology)

  • Jie Liu

    (South China University of Technology)

  • Hanchao Liu

    (Sun Yat-sen University)

  • Zhenqing Wang

    (Sun Yat-sen University)

  • Feng Gao

    (Sun Yat-sen University
    The First Affiliated Hospital of Sun Yat-sen University)

  • Yan Liao

    (South China University of Technology)

  • Xuetao Shi

    (South China University of Technology
    National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology
    Shenzhen Beike Biotechnology Co., Ltd.)

  • Chunhua Deng

    (Sun Yat-sen University)

  • Min Zhang

    (Sun Yat-sen University
    The First Affiliated Hospital of Sun Yat-sen University)

Abstract

As testicular mesenchymal stromal cells, stem Leydig cells (SLCs) show great promise in the treatment of male hypogonadism. The therapeutic functions of mesenchymal stromal cells are largely determined by their reciprocal regulation by immune responses. However, the immunoregulatory properties of SLCs remain unclear. Here, we observe that SLCs transplantation restore male fertility and testosterone production in an ischemia‒reperfusion injury mouse model. SLCs prevent inflammatory cascades through mitochondrial transfer to macrophages. Reactive oxygen species (ROS) released from activated macrophages inducing mitochondrial transfer from SLCs to macrophages in a transient receptor potential cation channel subfamily member 7 (TRPM7)-mediated manner. Notably, knockdown of TRPM7 in transplanted SLCs compromised therapeutic outcomes in both testicular ischemia‒reperfusion and testicular aging mouse models. These findings reveal a new mechanism of SLCs transplantation that may contribute to preserve testis function in male patients with hypogonadism related to immune disorders.

Suggested Citation

  • Ani Chi & Bicheng Yang & Hao Dai & Xinyu Li & Jiahui Mo & Yong Gao & Zhihong Chen & Xin Feng & Menghui Ma & Yanqing Li & Chao Yang & Jie Liu & Hanchao Liu & Zhenqing Wang & Feng Gao & Yan Liao & Xueta, 2024. "Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46190-2
    DOI: 10.1038/s41467-024-46190-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46190-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46190-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Senyu Yao & Xiaoyue Wei & Wenrui Deng & Boyan Wang & Jianye Cai & Yinong Huang & Xiaofan Lai & Yuan Qiu & Yi Wang & Yuanjun Guan & Jiancheng Wang, 2022. "Nestin-dependent mitochondria-ER contacts define stem Leydig cell differentiation to attenuate male reproductive ageing," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Yu-chi Shen & Adrienne Niederriter Shami & Lindsay Moritz & Hailey Larose & Gabriel L. Manske & Qianyi Ma & Xianing Zheng & Meena Sukhwani & Michael Czerwinski & Caleb Sultan & Haolin Chen & Stephen J, 2021. "TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Amira A. Barkal & Rachel E. Brewer & Maxim Markovic & Mark Kowarsky & Sammy A. Barkal & Balyn W. Zaro & Venkatesh Krishnan & Jason Hatakeyama & Oliver Dorigo & Layla J. Barkal & Irving L. Weissman, 2019. "CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy," Nature, Nature, vol. 572(7769), pages 392-396, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fumou Sun & Yan Cheng & Visanu Wanchai & Wancheng Guo & David Mery & Hongwei Xu & Dongzheng Gai & Eric Siegel & Clyde Bailey & Cody Ashby & Samer Al Hadidi & Carolina Schinke & Sharmilan Thanendraraja, 2024. "Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Chih-Wei Chou & Chia-Nung Hung & Cheryl Hsiang-Ling Chiu & Xi Tan & Meizhen Chen & Chien-Chin Chen & Moawiz Saeed & Che-Wei Hsu & Michael A. Liss & Chiou-Miin Wang & Zhao Lai & Nathaniel Alvarez & Paw, 2023. "Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Han Luo & Xuyang Xia & Li-Bin Huang & Hyunsu An & Minyuan Cao & Gyeong Dae Kim & Hai-Ning Chen & Wei-Han Zhang & Yang Shu & Xiangyu Kong & Zhixiang Ren & Pei-Heng Li & Yang Liu & Huairong Tang & Rongh, 2022. "Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Shiqun Wang & Wei Yan & Lingkai Kong & Shuguang Zuo & Jingyi Wu & Chunxiao Zhu & Huaping Huang & Bohao He & Jie Dong & Jiwu Wei, 2023. "Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Marco Bolis & Daniela Bossi & Arianna Vallerga & Valentina Ceserani & Manuela Cavalli & Daniela Impellizzieri & Laura Di Rito & Eugenio Zoni & Simone Mosole & Angela Rita Elia & Andrea Rinaldi & Ricar, 2021. "Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. E. H. Puttock & E. J. Tyler & M. Manni & E. Maniati & C. Butterworth & M. Burger Ramos & E. Peerani & P. Hirani & V. Gauthier & Y. Liu & G. Maniscalco & V. Rajeeve & P. Cutillas & C. Trevisan & M. Poz, 2023. "Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Weiqi Zhang & Yinghua Zeng & Qiuqun Xiao & Yuanyuan Wu & Jiale Liu & Haocheng Wang & Yuting Luo & Jie Zhan & Ning Liao & Yanbin Cai, 2024. "An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Awatef Allouch & Laurent Voisin & Yanyan Zhang & Syed Qasim Raza & Yann Lecluse & Julien Calvo & Dorothée Selimoglu-Buet & Stéphane Botton & Fawzia Louache & Françoise Pflumio & Eric Solary & Jean-Luc, 2022. "CDKN1A is a target for phagocytosis-mediated cellular immunotherapy in acute leukemia," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46190-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.