IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38093-5.html
   My bibliography  Save this article

Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis

Author

Listed:
  • E. H. Puttock

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • E. J. Tyler

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • M. Manni

    (University Hospital Basel)

  • E. Maniati

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • C. Butterworth

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • M. Burger Ramos

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • E. Peerani

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • P. Hirani

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • V. Gauthier

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • Y. Liu

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • G. Maniscalco

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • V. Rajeeve

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • P. Cutillas

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • C. Trevisan

    (University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza)

  • M. Pozzobon

    (University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza)

  • M. Lockley

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

  • J. Rastrick

    (UCB Pharma Ltd)

  • H. Läubli

    (University Hospital Basel)

  • A. White

    (UCB Pharma Ltd)

  • O. M. T. Pearce

    (Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre)

Abstract

Recent studies have shown that the tumor extracellular matrix (ECM) associates with immunosuppression, and that targeting the ECM can improve immune infiltration and responsiveness to immunotherapy. A question that remains unresolved is whether the ECM directly educates the immune phenotypes seen in tumors. Here, we identify a tumor-associated macrophage (TAM) population associated with poor prognosis, interruption of the cancer immunity cycle, and tumor ECM composition. To investigate whether the ECM was capable of generating this TAM phenotype, we developed a decellularized tissue model that retains the native ECM architecture and composition. Macrophages cultured on decellularized ovarian metastasis shared transcriptional profiles with the TAMs found in human tissue. ECM-educated macrophages have a tissue-remodeling and immunoregulatory phenotype, inducing altered T cell marker expression and proliferation. We conclude that the tumor ECM directly educates this macrophage population found in cancer tissues. Therefore, current and emerging cancer therapies that target the tumor ECM may be tailored to improve macrophage phenotype and their downstream regulation of immunity.

Suggested Citation

  • E. H. Puttock & E. J. Tyler & M. Manni & E. Maniati & C. Butterworth & M. Burger Ramos & E. Peerani & P. Hirani & V. Gauthier & Y. Liu & G. Maniscalco & V. Rajeeve & P. Cutillas & C. Trevisan & M. Poz, 2023. "Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38093-5
    DOI: 10.1038/s41467-023-38093-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38093-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38093-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel S. Chen & Ira Mellman, 2017. "Elements of cancer immunity and the cancer–immune set point," Nature, Nature, vol. 541(7637), pages 321-330, January.
    2. Ankur Chakravarthy & Lubaba Khan & Nathan Peter Bensler & Pinaki Bose & Daniel D. De Carvalho, 2018. "TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Amira A. Barkal & Rachel E. Brewer & Maxim Markovic & Mark Kowarsky & Sammy A. Barkal & Balyn W. Zaro & Venkatesh Krishnan & Jason Hatakeyama & Oliver Dorigo & Layla J. Barkal & Irving L. Weissman, 2019. "CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy," Nature, Nature, vol. 572(7769), pages 392-396, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fumou Sun & Yan Cheng & Visanu Wanchai & Wancheng Guo & David Mery & Hongwei Xu & Dongzheng Gai & Eric Siegel & Clyde Bailey & Cody Ashby & Samer Al Hadidi & Carolina Schinke & Sharmilan Thanendraraja, 2024. "Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Chih-Wei Chou & Chia-Nung Hung & Cheryl Hsiang-Ling Chiu & Xi Tan & Meizhen Chen & Chien-Chin Chen & Moawiz Saeed & Che-Wei Hsu & Michael A. Liss & Chiou-Miin Wang & Zhao Lai & Nathaniel Alvarez & Paw, 2023. "Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Maria Pouyiourou & Bianca N. Kraft & Timothy Wohlfromm & Michael Stahl & Boris Kubuschok & Harald Löffler & Ulrich T. Hacker & Gerdt Hübner & Lena Weiss & Michael Bitzer & Thomas Ernst & Philipp Schüt, 2023. "Nivolumab and ipilimumab in recurrent or refractory cancer of unknown primary: a phase II trial," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    6. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Heng-Jia Liu & Heng Du & Damir Khabibullin & Mahsa Zarei & Kevin Wei & Gordon J. Freeman & David J. Kwiatkowski & Elizabeth P. Henske, 2023. "mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Feng Xie & Xiaoxue Zhou & Peng Su & Heyu Li & Yifei Tu & Jinjin Du & Chen Pan & Xiang Wei & Min Zheng & Ke Jin & Liyan Miao & Chao Wang & Xuli Meng & Hans Dam & Peter Dijke & Long Zhang & Fangfang Zho, 2022. "Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Han Luo & Xuyang Xia & Li-Bin Huang & Hyunsu An & Minyuan Cao & Gyeong Dae Kim & Hai-Ning Chen & Wei-Han Zhang & Yang Shu & Xiangyu Kong & Zhixiang Ren & Pei-Heng Li & Yang Liu & Huairong Tang & Rongh, 2022. "Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Meriem Messaoudene & Stéphanie Ferreira & Nathalie Saint-Lu & Mayra Ponce & Caroline Truntzer & Romain Boidot & Clément Bescop & Thomas Loppinet & Tanguy Corbel & Céline Féger & Karine Bertrand & Arie, 2024. "The DAV132 colon-targeted adsorbent does not interfere with plasma concentrations of antibiotics but prevents antibiotic-related dysbiosis: a randomized phase I trial in healthy volunteers," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Charlotte K. Y. Ng & Eva Dazert & Tuyana Boldanova & Mairene Coto-Llerena & Sandro Nuciforo & Caner Ercan & Aleksei Suslov & Marie-Anne Meier & Thomas Bock & Alexander Schmidt & Sylvia Ketterer & Xuey, 2022. "Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Jingjing Qi & Hongxiang Sun & Yao Zhang & Zhengting Wang & Zhenzhen Xun & Ziyi Li & Xinyu Ding & Rujuan Bao & Liwen Hong & Wenqing Jia & Fei Fang & Hongzhi Liu & Lei Chen & Jie Zhong & Duowu Zou & Lia, 2022. "Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    14. Shunli Fu & Lili Chang & Shujun Liu & Tong Gao & Xiao Sang & Zipeng Zhang & Weiwei Mu & Xiaoqing Liu & Shuang Liang & Han Yang & Huizhen Yang & Qingping Ma & Yongjun Liu & Na Zhang, 2023. "Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Zhongwei Xin & Mingjie Lin & Zhixing Hao & Di Chen & Yongyuan Chen & Xiaoke Chen & Xia Xu & Jinfan Li & Dang Wu & Ying Chai & Pin Wu, 2022. "The immune landscape of human thymic epithelial tumors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Alessandra Castiglioni & Yagai Yang & Katherine Williams & Alvin Gogineni & Ryan S. Lane & Amber W. Wang & Justin A. Shyer & Zhe Zhang & Stephanie Mittman & Alan Gutierrez & Jillian L. Astarita & Minh, 2023. "Combined PD-L1/TGFβ blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Weicai Huang & Yuming Jiang & Wenjun Xiong & Zepang Sun & Chuanli Chen & Qingyu Yuan & Kangneng Zhou & Zhen Han & Hao Feng & Hao Chen & Xiaokun Liang & Shitong Yu & Yanfeng Hu & Jiang Yu & Yan Chen & , 2022. "Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Shiqun Wang & Wei Yan & Lingkai Kong & Shuguang Zuo & Jingyi Wu & Chunxiao Zhu & Huaping Huang & Bohao He & Jie Dong & Jiwu Wei, 2023. "Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Weiqi Zhang & Yinghua Zeng & Qiuqun Xiao & Yuanyuan Wu & Jiale Liu & Haocheng Wang & Yuting Luo & Jie Zhan & Ning Liao & Yanbin Cai, 2024. "An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38093-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.