IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46038-9.html
   My bibliography  Save this article

Mode-multiplexing deep-strong light-matter coupling

Author

Listed:
  • Joshua Mornhinweg

    (University of Regensburg
    TU Dortmund University)

  • Laura Katharina Diebel

    (University of Regensburg)

  • Maike Halbhuber

    (University of Regensburg)

  • Michael Prager

    (University of Regensburg)

  • Josef Riepl

    (University of Regensburg)

  • Tobias Inzenhofer

    (University of Regensburg)

  • Dominique Bougeard

    (University of Regensburg)

  • Rupert Huber

    (University of Regensburg)

  • Christoph Lange

    (TU Dortmund University)

Abstract

Dressing electronic quantum states with virtual photons creates exotic effects ranging from vacuum-field modified transport to polaritonic chemistry, and squeezing or entanglement of modes. The established paradigm of cavity quantum electrodynamics maximizes the light-matter coupling strength $${\varOmega }_{{{{{{\rm{R}}}}}}}/{\omega }_{{{{{{\rm{c}}}}}}}$$ Ω R / ω c , defined as the ratio of the vacuum Rabi frequency and the frequency of light, by resonant interactions. Yet, the finite oscillator strength of a single electronic excitation sets a natural limit to $${\varOmega }_{{{{{{\rm{R}}}}}}}/{\omega }_{{{{{{\rm{c}}}}}}}$$ Ω R / ω c . Here, we enter a regime of record-strong light-matter interaction which exploits the cooperative dipole moments of multiple, highly non-resonant magnetoplasmon modes tailored by our metasurface. This creates an ultrabroadband spectrum of 20 polaritons spanning 6 optical octaves, calculated vacuum ground state populations exceeding 1 virtual excitation quantum, and coupling strengths equivalent to $${\varOmega }_{{{{{{\rm{R}}}}}}}/{\omega }_{{{{{{\rm{c}}}}}}}=3.19$$ Ω R / ω c = 3.19 . The extreme interaction drives strongly subcycle energy exchange between multiple bosonic vacuum modes akin to high-order nonlinearities, and entangles previously orthogonal electronic excitations solely via vacuum fluctuations.

Suggested Citation

  • Joshua Mornhinweg & Laura Katharina Diebel & Maike Halbhuber & Michael Prager & Josef Riepl & Tobias Inzenhofer & Dominique Bougeard & Rupert Huber & Christoph Lange, 2024. "Mode-multiplexing deep-strong light-matter coupling," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46038-9
    DOI: 10.1038/s41467-024-46038-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46038-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46038-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niclas S. Mueller & Yu Okamura & Bruno G. M. Vieira & Sabrina Juergensen & Holger Lange & Eduardo B. Barros & Florian Schulz & Stephanie Reich, 2020. "Deep strong light–matter coupling in plasmonic nanoparticle crystals," Nature, Nature, vol. 583(7818), pages 780-784, July.
    2. Simone De Liberato, 2017. "Virtual photons in the ground state of a dissipative system," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fenghao Sun & Qiwen Qu & Hui Li & Shicheng Jiang & Qingcao Liu & Shuai Ben & Yu Pei & Jiaying Liang & Jiawei Wang & Shanshan Song & Jian Gao & Weifeng Yang & Hongxing Xu & Jian Wu, 2024. "All-optical steering on the proton emission in laser-induced nanoplasmas," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. María Barra-Burillo & Unai Muniain & Sara Catalano & Marta Autore & Fèlix Casanova & Luis E. Hueso & Javier Aizpurua & Ruben Esteban & Rainer Hillenbrand, 2021. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Tingting Wu & Chongwu Wang & Guangwei Hu & Zhixun Wang & Jiaxin Zhao & Zhe Wang & Ksenia Chaykun & Lin Liu & Mengxiao Chen & Dong Li & Song Zhu & Qihua Xiong & Zexiang Shen & Huajian Gao & Francisco J, 2024. "Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46038-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.