IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v619y2023i7968d10.1038_s41586-023-06074-9.html
   My bibliography  Save this article

Attosecond electron microscopy of sub-cycle optical dynamics

Author

Listed:
  • David Nabben

    (Universität Konstanz)

  • Joel Kuttruff

    (Universität Konstanz)

  • Levin Stolz

    (Universität Konstanz)

  • Andrey Ryabov

    (Universität Konstanz)

  • Peter Baum

    (Universität Konstanz)

Abstract

The primary step of almost any interaction between light and materials is the electrodynamic response of the electrons to the optical cycles of the impinging light wave on sub-wavelength and sub-cycle dimensions1. Understanding and controlling the electromagnetic responses of a material2–11 is therefore essential for modern optics and nanophotonics12–19. Although the small de Broglie wavelength of electron beams should allow access to attosecond and ångström dimensions20, the time resolution of ultrafast electron microscopy21 and diffraction22 has so far been limited to the femtosecond domain16–18, which is insufficient for recording fundamental material responses on the scale of the cycles of light1,2,10. Here we advance transmission electron microscopy to attosecond time resolution of optical responses within one cycle of excitation light23. We apply a continuous-wave laser24 to modulate the electron wave function into a rapid sequence of electron pulses, and use an energy filter to resolve electromagnetic near-fields in and around a material as a movie in space and time. Experiments on nanostructured needle tips, dielectric resonators and metamaterial antennas reveal a directional launch of chiral surface waves, a delay between dipole and quadrupole dynamics, a subluminal buried waveguide field and a symmetry-broken multi-antenna response. These results signify the value of combining electron microscopy and attosecond laser science to understand light–matter interactions in terms of their fundamental dimensions in space and time.

Suggested Citation

  • David Nabben & Joel Kuttruff & Levin Stolz & Andrey Ryabov & Peter Baum, 2023. "Attosecond electron microscopy of sub-cycle optical dynamics," Nature, Nature, vol. 619(7968), pages 63-67, July.
  • Handle: RePEc:nat:nature:v:619:y:2023:i:7968:d:10.1038_s41586-023-06074-9
    DOI: 10.1038/s41586-023-06074-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06074-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06074-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilian Mattes & Mikhail Volkov & Peter Baum, 2024. "Femtosecond electron beam probe of ultrafast electronics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:619:y:2023:i:7968:d:10.1038_s41586-023-06074-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.