IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45691-4.html
   My bibliography  Save this article

Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth

Author

Listed:
  • Sophie G. Kellaway

    (University of Birmingham
    University of Nottingham)

  • Sandeep Potluri

    (University of Birmingham)

  • Peter Keane

    (University of Birmingham
    University of Birmingham)

  • Helen J. Blair

    (Newcastle University)

  • Luke Ames

    (University of Birmingham)

  • Alice Worker

    (University of Birmingham)

  • Paulynn S. Chin

    (University of Birmingham)

  • Anetta Ptasinska

    (University of Birmingham)

  • Polina K. Derevyanko

    (Princess Maxima Center of Pediatric Oncology)

  • Assunta Adamo

    (University of Birmingham)

  • Daniel J. L. Coleman

    (University of Birmingham)

  • Naeem Khan

    (University of Birmingham)

  • Salam A. Assi

    (University of Birmingham)

  • Anja Krippner-Heidenreich

    (Princess Maxima Center of Pediatric Oncology)

  • Manoj Raghavan

    (University of Birmingham
    Queen Elizabeth Hospital)

  • Peter N. Cockerill

    (University of Birmingham)

  • Olaf Heidenreich

    (Newcastle University
    Princess Maxima Center of Pediatric Oncology)

  • Constanze Bonifer

    (University of Birmingham)

Abstract

Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.

Suggested Citation

  • Sophie G. Kellaway & Sandeep Potluri & Peter Keane & Helen J. Blair & Luke Ames & Alice Worker & Paulynn S. Chin & Anetta Ptasinska & Polina K. Derevyanko & Assunta Adamo & Daniel J. L. Coleman & Naee, 2024. "Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45691-4
    DOI: 10.1038/s41467-024-45691-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45691-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45691-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tannishtha Reya & Sean J. Morrison & Michael F. Clarke & Irving L. Weissman, 2001. "Stem cells, cancer, and cancer stem cells," Nature, Nature, vol. 414(6859), pages 105-111, November.
    2. Yue Sheng & Chunjie Yu & Yin Liu & Chao Hu & Rui Ma & Xinyan Lu & Peng Ji & Jianjun Chen & Benjamin Mizukawa & Yong Huang & Jonathan D. Licht & Zhijian Qian, 2020. "FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    3. Jie Xu & Fan Song & Huijue Lyu & Mikoto Kobayashi & Baozhen Zhang & Ziyu Zhao & Ye Hou & Xiaotao Wang & Yu Luan & Bei Jia & Lena Stasiak & Josiah Hiu-yuen Wong & Qixuan Wang & Qi Jin & Qiushi Jin & Yi, 2022. "Subtype-specific 3D genome alteration in acute myeloid leukaemia," Nature, Nature, vol. 611(7935), pages 387-398, November.
    4. Kakkad Regha & Salam A. Assi & Olga Tsoulaki & Jane Gilmour & Georges Lacaud & Constanze Bonifer, 2015. "Developmental-stage-dependent transcriptional response to leukaemic oncogene expression," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    5. Junyue Cao & Malte Spielmann & Xiaojie Qiu & Xingfan Huang & Daniel M. Ibrahim & Andrew J. Hill & Fan Zhang & Stefan Mundlos & Lena Christiansen & Frank J. Steemers & Cole Trapnell & Jay Shendure, 2019. "The single-cell transcriptional landscape of mammalian organogenesis," Nature, Nature, vol. 566(7745), pages 496-502, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeinab Tavasoli & Parviz Abdolmaleki & Seyed Javad Mowla & Faezeh Ghanati & Amir Sabet Sarvestani, 2009. "Investigation of the effects of static magnetic field on apoptosis in bone marrow stem cells of rat," Environment Systems and Decisions, Springer, vol. 29(2), pages 220-224, June.
    2. Sivakamasundari Vijayakumar & Roberta Sala & Gugene Kang & Angela Chen & Michelle Ann Pablo & Abidemi Ismail Adebayo & Andrea Cipriano & Jonas L. Fowler & Danielle L. Gomes & Lay Teng Ang & Kyle M. Lo, 2023. "Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Brian DeVeale & Leqian Liu & Ryan Boileau & Jennifer Swindlehurst-Chan & Bryan Marsh & Jacob W. Freimer & Adam Abate & Robert Blelloch, 2022. "G1/S restriction point coordinates phasic gene expression and cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Yasuaki Uehara & Yusuke Tanaka & Shuyang Zhao & Nikolaos M. Nikolaidis & Lori B. Pitstick & Huixing Wu & Jane J. Yu & Erik Zhang & Yoshihiro Hasegawa & John G. Noel & Jason C. Gardner & Elizabeth J. K, 2023. "Insights into pulmonary phosphate homeostasis and osteoclastogenesis emerge from the study of pulmonary alveolar microlithiasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Ci Fu & Xiang Zhang & Amanda O. Veri & Kali R. Iyer & Emma Lash & Alice Xue & Huijuan Yan & Nicole M. Revie & Cassandra Wong & Zhen-Yuan Lin & Elizabeth J. Polvi & Sean D. Liston & Benjamin VanderSlui, 2021. "Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    7. Junyi Chen & Xiaoying Wang & Anjun Ma & Qi-En Wang & Bingqiang Liu & Lang Li & Dong Xu & Qin Ma, 2022. "Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Kotaro Shimizu & Junichi Kikuta & Yumi Ohta & Yutaka Uchida & Yu Miyamoto & Akito Morimoto & Shinya Yari & Takashi Sato & Takefumi Kamakura & Kazuo Oshima & Ryusuke Imai & Yu-Chen Liu & Daisuke Okuzak, 2023. "Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Young Hee Lee & Yu-Been Kim & Kyu Sik Kim & Mirae Jang & Ha Young Song & Sang-Ho Jung & Dong-Soo Ha & Joon Seok Park & Jaegeon Lee & Kyung Min Kim & Deok-Hyeon Cheon & Inhyeok Baek & Min-Gi Shin & Eun, 2023. "Lateral hypothalamic leptin receptor neurons drive hunger-gated food-seeking and consummatory behaviours in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Sandra Curras-Alonso & Juliette Soulier & Thomas Defard & Christian Weber & Sophie Heinrich & Hugo Laporte & Sophie Leboucher & Sonia Lameiras & Marie Dutreix & Vincent Favaudon & Florian Massip & Tho, 2023. "An interactive murine single-cell atlas of the lung responses to radiation injury," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Seung-Hyun Jung & Byung-Hee Hwang & Sun Shin & Eun-Hye Park & Sin-Hee Park & Chan Woo Kim & Eunmin Kim & Eunho Choo & Ik Jun Choi & Filip K. Swirski & Kiyuk Chang & Yeun-Jun Chung, 2022. "Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Hailun Zhu & Sihai Dave Zhao & Alokananda Ray & Yu Zhang & Xin Li, 2022. "A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Siegmund Kimberly D. & Marjoram Paul & Shibata Darryl, 2008. "Modeling DNA Methylation in a Population of Cancer Cells," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-23, June.
    14. Meacci, Luca & Primicerio, Mario & Buscaglia, Gustavo Carlos, 2021. "Growth of tumours with stem cells: The effect of crowding and ageing of cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    15. Luke Simpson & Andrew Strange & Doris Klisch & Sophie Kraunsoe & Takuya Azami & Daniel Goszczynski & Triet Minh & Benjamin Planells & Nadine Holmes & Fei Sang & Sonal Henson & Matthew Loose & Jennifer, 2024. "A single-cell atlas of pig gastrulation as a resource for comparative embryology," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Sonali Narang & Yohana Ghebrechristos & Nikki A. Evensen & Nina Murrell & Sylwia Jasinski & Talia H. Ostrow & David T. Teachey & Elizabeth A. Raetz & Timothee Lionnet & Matthew Witkowski & Iannis Aifa, 2024. "Clonal evolution of the 3D chromatin landscape in patients with relapsed pediatric B-cell acute lymphoblastic leukemia," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Hannah Drew Rickner & Lulu Jiang & Rui Hong & Nicholas K. O’Neill & Chromewell A. Mojica & Benjamin J. Snyder & Lushuang Zhang & Dipan Shaw & Maria Medalla & Benjamin Wolozin & Christine S. Cheng, 2022. "Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    18. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    19. Shuyan Liu & Chengfei Liu & Xiaoyun Min & Yuanyuan Ji & Na Wang & Dan Liu & Jiangyi Cai & Ke Li, 2013. "Prognostic Value of Cancer Stem Cell Marker Aldehyde Dehydrogenase in Ovarian Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    20. Umji Lee & Yadong Zhang & Yonglin Zhu & Allen Chilun Luo & Liyan Gong & Daniel M. Tremmel & Yunhye Kim & Victoria Sofia Villarreal & Xi Wang & Ruei-Zeng Lin & Miao Cui & Minglin Ma & Ke Yuan & Kai Wan, 2024. "Robust differentiation of human pluripotent stem cells into mural progenitor cells via transient activation of NKX3.1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45691-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.