IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14590-9.html
   My bibliography  Save this article

FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML

Author

Listed:
  • Yue Sheng

    (University of Florida
    University of Illinois at Chicago)

  • Chunjie Yu

    (University of Florida
    University of Illinois at Chicago)

  • Yin Liu

    (University of Florida
    University of Illinois at Chicago)

  • Chao Hu

    (University of Illinois at Chicago)

  • Rui Ma

    (University of Illinois at Chicago)

  • Xinyan Lu

    (Feinberg School of Medicine)

  • Peng Ji

    (Feinberg School of Medicine)

  • Jianjun Chen

    (Department of System Biology)

  • Benjamin Mizukawa

    (Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center)

  • Yong Huang

    (University of Virginia)

  • Jonathan D. Licht

    (University of Florida)

  • Zhijian Qian

    (University of Florida
    University of Illinois at Chicago)

Abstract

FOXM1, a known transcription factor, promotes cell proliferation in a variety of cancer cells. Here we show that Foxm1 is required for survival, quiescence and self-renewal of MLL-AF9 (MA9)-transformed leukemia stem cells (LSCs) in vivo. Mechanistically, Foxm1 upregulation activates the Wnt/β-catenin signaling pathways by directly binding to β-catenin and stabilizing β-catenin protein through inhibiting its degradation, thereby preserving LSC quiescence, and promoting LSC self-renewal in MLL-rearranged AML. More importantly, inhibition of FOXM1 markedly suppresses leukemogenic potential and induces apoptosis of primary LSCs from MLL-rearranged AML patients in vitro and in vivo in xenograft mice. Thus, our study shows a critical role and mechanisms of Foxm1 in MA9-LSCs, and indicates that FOXM1 is a potential therapeutic target for selectively eliminating LSCs in MLL-rearranged AML.

Suggested Citation

  • Yue Sheng & Chunjie Yu & Yin Liu & Chao Hu & Rui Ma & Xinyan Lu & Peng Ji & Jianjun Chen & Benjamin Mizukawa & Yong Huang & Jonathan D. Licht & Zhijian Qian, 2020. "FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14590-9
    DOI: 10.1038/s41467-020-14590-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14590-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14590-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hue M. La & Jinyue Liao & Julien M. D. Legrand & Fernando J. Rossello & Ai-Leen Chan & Vijesh Vaghjiani & Jason E. Cain & Antonella Papa & Tin Lap Lee & Robin M. Hobbs, 2022. "Distinctive molecular features of regenerative stem cells in the damaged male germline," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Sophie G. Kellaway & Sandeep Potluri & Peter Keane & Helen J. Blair & Luke Ames & Alice Worker & Paulynn S. Chin & Anetta Ptasinska & Polina K. Derevyanko & Assunta Adamo & Daniel J. L. Coleman & Naee, 2024. "Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14590-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.