IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45674-5.html
   My bibliography  Save this article

Tunable templating of photonic microparticles via liquid crystal order-guided adsorption of amphiphilic polymers in emulsions

Author

Listed:
  • Xu Ma

    (University of Luxembourg)

  • Yucen Han

    (University of Strathclyde)

  • Yan-Song Zhang

    (University of Luxembourg)

  • Yong Geng

    (University of Luxembourg)

  • Apala Majumdar

    (University of Strathclyde)

  • Jan P. F. Lagerwall

    (University of Luxembourg)

Abstract

Multiple emulsions are usually stabilized by amphiphilic molecules that combine the chemical characteristics of the different phases in contact. When one phase is a liquid crystal (LC), the choice of stabilizer also determines its configuration, but conventional wisdom assumes that the orientational order of the LC has no impact on the stabilizer. Here we show that, for the case of amphiphilic polymer stabilizers, this impact can be considerable. The mode of interaction between stabilizer and LC changes if the latter is heated close to its isotropic state, initiating a feedback loop that reverberates on the LC in form of a complete structural rearrangement. We utilize this phenomenon to dynamically tune the configuration of cholesteric LC shells from one with radial helix and spherically symmetric Bragg diffraction to a focal conic domain configuration with highly complex optics. Moreover, we template photonic microparticles from the LC shells by photopolymerizing them into solids, retaining any selected LC-derived structure. Our study places LC emulsions in a new light, calling for a reevaluation of the behavior of stabilizer molecules in contact with long-range ordered phases, while also enabling highly interesting photonic elements with application opportunities across vast fields.

Suggested Citation

  • Xu Ma & Yucen Han & Yan-Song Zhang & Yong Geng & Apala Majumdar & Jan P. F. Lagerwall, 2024. "Tunable templating of photonic microparticles via liquid crystal order-guided adsorption of amphiphilic polymers in emulsions," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45674-5
    DOI: 10.1038/s41467-024-45674-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45674-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45674-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard M. Parker & Tianheng H. Zhao & Bruno Frka-Petesic & Silvia Vignolini, 2022. "Cellulose photonic pigments," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Min-Jun Gim & Daniel A. Beller & Dong Ki Yoon, 2017. "Morphogenesis of liquid crystal topological defects during the nematic-smectic A phase transition," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    3. Dae Seok Kim & Yun Jeong Cha & Mun Ho Kim & Oleg D. Lavrentovich & Dong Ki Yoon, 2016. "Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinrong Liu & Mathias Nero & Kjell Jansson & Tom Willhammar & Mika H. Sipponen, 2023. "Photonic crystals with rainbow colors by centrifugation-assisted assembly of colloidal lignin nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jack Paget & Marco G. Mazza & Andrew J. Archer & Tyler N. Shendruk, 2023. "Complex-tensor theory of simple smectics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45674-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.