IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45477-8.html
   My bibliography  Save this article

Glucocorticoids increase adiposity by stimulating Krüppel-like factor 9 expression in macrophages

Author

Listed:
  • Yinliang Zhang

    (Tianjin Medical University)

  • Chunyuan Du

    (Tianjin Medical University)

  • Wei Wang

    (Hubei University)

  • Wei Qiao

    (Tianjin Medical University)

  • Yuhui Li

    (Tianjin Medical University)

  • Yujie Zhang

    (Tianjin Medical University)

  • Sufang Sheng

    (Tianjin Medical University)

  • Xuenan Zhou

    (Tianjin Medical University)

  • Lei Zhang

    (Tianjin Medical University)

  • Heng Fan

    (General Hospital of Ningxia Medical University)

  • Ying Yu

    (Tianjin Medical University)

  • Yong Chen

    (Hubei University)

  • Yunfei Liao

    (Huazhong University of Science and Technology)

  • Shihong Chen

    (The Second Hospital of Shandong University)

  • Yongsheng Chang

    (Tianjin Medical University)

Abstract

The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.

Suggested Citation

  • Yinliang Zhang & Chunyuan Du & Wei Wang & Wei Qiao & Yuhui Li & Yujie Zhang & Sufang Sheng & Xuenan Zhou & Lei Zhang & Heng Fan & Ying Yu & Yong Chen & Yunfei Liao & Shihong Chen & Yongsheng Chang, 2024. "Glucocorticoids increase adiposity by stimulating Krüppel-like factor 9 expression in macrophages," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45477-8
    DOI: 10.1038/s41467-024-45477-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45477-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45477-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huilong Yin & Xiang Zhang & Pengyuan Yang & Xiaofang Zhang & Yingran Peng & Da Li & Yanping Yu & Ye Wu & Yidi Wang & Jinbao Zhang & Xiaochen Ding & Xiangpeng Wang & Angang Yang & Rui Zhang, 2021. "RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Han & Lijuan Liu & Saihua Huang & Wenfeng Xiao & Yajing Gao & Weitao Zhou & Caiyan Zhang & Hongmei Zheng & Lan Yang & Xueru Xie & Qiuyan Liang & Zikun Tu & Hongmiao Yu & Jinrong Fu & Libo Wang & , 2023. "RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Cristina Leoni & Marian Bataclan & Taku Ito-Kureha & Vigo Heissmeyer & Silvia Monticelli, 2023. "The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Xiang Zhang & Huilong Yin & Xiaofang Zhang & Xunliang Jiang & Yongkang Liu & Haolin Zhang & Yingran Peng & Da Li & Yanping Yu & Jinbao Zhang & Shuli Cheng & Angang Yang & Rui Zhang, 2022. "N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45477-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.