IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45361-5.html
   My bibliography  Save this article

Assessment of human leukocyte antigen-based neoantigen presentation to determine pan-cancer response to immunotherapy

Author

Listed:
  • Jiefei Han

    (Chinese Academy of Medical Sciences and Peking Union Medical College
    Capital Medical University)

  • Yiting Dong

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Xiuli Zhu

    (Geneplus-Beijing Institute
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences and China National Center for Bioinformation)

  • Alexandre Reuben

    (The University of Texas M. D. Anderson Cancer Center)

  • Jianjun Zhang

    (The University of Texas M. D. Anderson Cancer Center)

  • Jiachen Xu

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Hua Bai

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Jianchun Duan

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Rui Wan

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Jie Zhao

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Jing Bai

    (Geneplus-Beijing Institute)

  • Xuefeng Xia

    (Geneplus-Beijing Institute)

  • Xin Yi

    (Geneplus-Beijing Institute)

  • Chao Cheng

    (Baylor College of Medicine)

  • Jie Wang

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Zhijie Wang

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

Abstract

Despite the central role of human leukocyte antigen class I (HLA-I) in tumor neoantigen presentation, quantitative determination of presentation capacity remains elusive. Based on a pooled pan-cancer genomic dataset of 885 patients treated with immune checkpoint inhibitors (ICIs), we developed a score integrating the binding affinity of neoantigens to HLA-I, as well as HLA-I allele divergence, termed the HLA tumor-Antigen Presentation Score (HAPS). Patients with a high HAPS were more likely to experience survival benefit following ICI treatment. Analysis of the tumor microenvironment indicated that the antigen presentation pathway was enriched in patients with a high HAPS. Finally, we built a neural network incorporating factors associated with neoantigen production, presentation, and recognition, which exhibited potential for differentiating cancer patients likely to benefit from ICIs. Our findings highlight the clinical utility of evaluating HLA-I tumor antigen presentation capacity and describe how ICI response may depend on HLA-mediated immunity.

Suggested Citation

  • Jiefei Han & Yiting Dong & Xiuli Zhu & Alexandre Reuben & Jianjun Zhang & Jiachen Xu & Hua Bai & Jianchun Duan & Rui Wan & Jie Zhao & Jing Bai & Xuefeng Xia & Xin Yi & Chao Cheng & Jie Wang & Zhijie W, 2024. "Assessment of human leukocyte antigen-based neoantigen presentation to determine pan-cancer response to immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45361-5
    DOI: 10.1038/s41467-024-45361-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45361-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45361-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marta Łuksza & Zachary M. Sethna & Luis A. Rojas & Jayon Lihm & Barbara Bravi & Yuval Elhanati & Kevin Soares & Masataka Amisaki & Anton Dobrin & David Hoyos & Pablo Guasp & Abderezak Zebboudj & Rebec, 2022. "Neoantigen quality predicts immunoediting in survivors of pancreatic cancer," Nature, Nature, vol. 606(7913), pages 389-395, June.
    2. Mahesh Yadav & Suchit Jhunjhunwala & Qui T. Phung & Patrick Lupardus & Joshua Tanguay & Stephanie Bumbaca & Christian Franci & Tommy K. Cheung & Jens Fritsche & Toni Weinschenk & Zora Modrusan & Ira M, 2014. "Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing," Nature, Nature, vol. 515(7528), pages 572-576, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehwish Iftikhar & Muhammad Imran Qureshi & Shazia Qayyum & Iram Fatima & Sriyanto Sriyanto & Yasinta Indrianti & Aqeel Khan & Leo-Paul Dana, 2021. "Impact of Multifaceted Workplace Bullying on the Relationships between Technology Usage, Organisational Climate and Employee Physical and Emotional Health," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
    2. Zhen Lu & Jinyun Chen & Pengfei Yu & Matthew J. Atherton & Jun Gui & Vivek S. Tomar & Justin D. Middleton & Neil T. Sullivan & Sunil Singhal & Subin S. George & Ashley G. Woolfork & Aalim M. Weljie & , 2022. "Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Judit Svensson-Arvelund & Sara Cuadrado-Castano & Gvantsa Pantsulaia & Kristy Kim & Mark Aleynick & Linda Hammerich & Ranjan Upadhyay & Michael Yellin & Henry Marsh & Daniel Oreper & Suchit Jhunjhunwa, 2022. "Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Jens Bauer & Natalie Köhler & Yacine Maringer & Philip Bucher & Tatjana Bilich & Melissa Zwick & Severin Dicks & Annika Nelde & Marissa Dubbelaar & Jonas Scheid & Marcel Wacker & Jonas S. Heitmann & S, 2022. "The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Naomi Hoenisch Gravel & Annika Nelde & Jens Bauer & Lena Mühlenbruch & Sarah M. Schroeder & Marian C. Neidert & Jonas Scheid & Steffen Lemke & Marissa L. Dubbelaar & Marcel Wacker & Anna Dengler & Rei, 2023. "TOFIMS mass spectrometry-based immunopeptidomics refines tumor antigen identification," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Juan Shen & Xiao Tu & Yuanyuan Li, 2023. "Mathematical Modeling Reveals Mechanisms of Cancer-Immune Interactions Underlying Hepatocellular Carcinoma Development," Mathematics, MDPI, vol. 11(20), pages 1-30, October.
    8. Hakimeh Ebrahimi-Nik & Marmar Moussa & Ryan P. Englander & Summit Singhaviranon & Justine Michaux & HuiSong Pak & Hiroko Miyadera & William L. Corwin & Grant L. J. Keller & Adam T. Hagymasi & Tatiana , 2021. "Reversion analysis reveals the in vivo immunogenicity of a poorly MHC I-binding cancer neoepitope," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Ashish Goyal & Jens Bauer & Joschka Hey & Dimitris N. Papageorgiou & Ekaterina Stepanova & Michael Daskalakis & Jonas Scheid & Marissa Dubbelaar & Boris Klimovich & Dominic Schwarz & Melanie Märklin &, 2023. "DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Haodong Xu & Ruifeng Hu & Xianjun Dong & Lan Kuang & Wenchao Zhang & Chao Tu & Zhihong Li & Zhongming Zhao, 2024. "ImmuneApp for HLA-I epitope prediction and immunopeptidome analysis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45361-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.