IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21793-1.html
   My bibliography  Save this article

Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams

Author

Listed:
  • Ziyi Zhu

    (University of South Florida)

  • Molly Janasik

    (University of South Florida
    Michigan State University)

  • Alexander Fyffe

    (University of South Florida)

  • Darrick Hay

    (University of South Florida)

  • Yiyu Zhou

    (University of Rochester)

  • Brian Kantor

    (University of South Florida)

  • Taylor Winder

    (University of South Florida)

  • Robert W. Boyd

    (University of Rochester
    University of Ottawa
    Max Plank Institute for the Science of Light)

  • Gerd Leuchs

    (Max Plank Institute for the Science of Light)

  • Zhimin Shi

    (University of South Florida)

Abstract

Free-space optical communication is a promising means to establish versatile, secure and high-bandwidth communication between mobile nodes for many critical applications. While the spatial modes of light offer a degree of freedom to increase the information capacity of an optical link, atmospheric turbulence can introduce severe distortion to the spatial modes and lead to data degradation. Here, we demonstrate experimentally a vector-beam-based, turbulence-resilient communication protocol, namely spatial polarization differential phase shift keying (SPDPSK), that can reliably transmit high-dimensional information through a turbulent channel without the need of any adaptive optics for beam compensation. In a proof-of-principle experiment with a controllable turbulence cell, we measure a channel capacity of 4.84 bits per pulse using 34 vector modes through a turbulent channel with a scintillation index of 1.09, and 4.02 bits per pulse using 18 vector modes through even stronger turbulence corresponding to a scintillation index of 1.54.

Suggested Citation

  • Ziyi Zhu & Molly Janasik & Alexander Fyffe & Darrick Hay & Yiyu Zhou & Brian Kantor & Taylor Winder & Robert W. Boyd & Gerd Leuchs & Zhimin Shi, 2021. "Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21793-1
    DOI: 10.1038/s41467-021-21793-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21793-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21793-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Plöschner & Marcos Maestre Morote & Daniel Stephen Dahl & Mickael Mounaix & Greta Light & Aleksandar D. Rakić & Joel Carpenter, 2022. "Spatial tomography of light resolved in time, spectrum, and polarisation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Xiaodong Qiu & Haoxu Guo & Lixiang Chen, 2023. "Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yi-Heng Zhang & Si-Jia Liu & Peng Chen & Dong Zhu & Wen Chen & Shi-Jun Ge & Yu Wang & Zhi-Feng Zhang & Yan-Qing Lu, 2024. "Logical rotation of non-separable states via uniformly self-assembled chiral superstructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Davide Pierangeli & Claudio Conti, 2023. "Single-shot polarimetry of vector beams by supervised learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21793-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.