IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45267-2.html
   My bibliography  Save this article

Compact terahertz harmonic generation in the Reststrahlenband using a graphene-embedded metallic split ring resonator array

Author

Listed:
  • Alessandra Di Gaspare

    (CNR-NANO and Scuola Normale Superiore)

  • Chao Song

    (Université de Paris Cité)

  • Chiara Schiattarella

    (CNR-NANO and Scuola Normale Superiore)

  • Lianhe H. Li

    (University of Leeds)

  • Mohammed Salih

    (University of Leeds)

  • A. Giles Davies

    (University of Leeds)

  • Edmund H. Linfield

    (University of Leeds)

  • Jincan Zhang

    (University of Cambridge)

  • Osman Balci

    (University of Cambridge)

  • Andrea C. Ferrari

    (University of Cambridge)

  • Sukhdeep Dhillon

    (Université de Paris Cité)

  • Miriam S. Vitiello

    (CNR-NANO and Scuola Normale Superiore)

Abstract

Harmonic generation is a result of a strong non-linear interaction between light and matter. It is a key technology for optics, as it allows the conversion of optical signals to higher frequencies. Owing to its intrinsically large and electrically tunable non-linear optical response, graphene has been used for high harmonic generation but, until now, only at frequencies

Suggested Citation

  • Alessandra Di Gaspare & Chao Song & Chiara Schiattarella & Lianhe H. Li & Mohammed Salih & A. Giles Davies & Edmund H. Linfield & Jincan Zhang & Osman Balci & Andrea C. Ferrari & Sukhdeep Dhillon & Mi, 2024. "Compact terahertz harmonic generation in the Reststrahlenband using a graphene-embedded metallic split ring resonator array," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45267-2
    DOI: 10.1038/s41467-024-45267-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45267-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45267-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. He & S. K. Gorman & D. Keith & L. Kranz & J. G. Keizer & M. Y. Simmons, 2019. "A two-qubit gate between phosphorus donor electrons in silicon," Nature, Nature, vol. 571(7765), pages 371-375, July.
    2. Jikun Liu & Litao Wang & Fei Chen & Wenya Hu & Chenglong Dong & Yinghao Wang & Yehua Han, 2023. "Molecular Characterization of Hydrocarbons in Petroleum by Ultrahigh-Resolution Mass Spectrometry," Energies, MDPI, vol. 16(11), pages 1-16, May.
    3. Vezio Bianchi & Tian Carey & Leonardo Viti & Lianhe Li & Edmund H. Linfield & A. Giles Davies & Alessandro Tredicucci & Duhee Yoon & Panagiotis G. Karagiannidis & Lucia Lombardi & Flavia Tomarchio & A, 2017. "Terahertz saturable absorbers from liquid phase exfoliation of graphite," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liu & Johan V. Knutsson & Nathaniel Wilson & Elliot Young & Sebastian Lehmann & Kimberly A. Dick & Chris J. Palmstrøm & Anders Mikkelsen & Rainer Timm, 2021. "Self-selective formation of ordered 1D and 2D GaBi structures on wurtzite GaAs nanowire surfaces," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. L. Banszerus & K. Hecker & S. Möller & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2022. "Spin relaxation in a single-electron graphene quantum dot," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Xiqiao Wang & Ehsan Khatami & Fan Fei & Jonathan Wyrick & Pradeep Namboodiri & Ranjit Kashid & Albert F. Rigosi & Garnett Bryant & Richard Silver, 2022. "Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45267-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.