IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45263-6.html
   My bibliography  Save this article

Realization of large-area ultraflat chiral blue phosphorene

Author

Listed:
  • Ye-Heng Song

    (Henan University
    Henan Academy of Sciences)

  • M. U. Muzaffar

    (University of Science and Technology of China)

  • Qi Wang

    (Henan University)

  • Yunhui Wang

    (Henan University)

  • Yu Jia

    (Henan University
    Henan University
    Zhengzhou University)

  • Ping Cui

    (University of Science and Technology of China)

  • Weifeng Zhang

    (Henan University
    Henan Academy of Sciences)

  • Xue-Sen Wang

    (National University of Singapore)

  • Zhenyu Zhang

    (University of Science and Technology of China)

Abstract

Blue phosphorene (BlueP), a theoretically proposed phosphorous allotrope with buckled honeycomb lattice, has attracted considerable interest due to its intriguing properties. Introducing chirality into BlueP can further enrich its physical and chemical properties, expanding its potential for applications. However, the synthesis of chiral BlueP remains elusive. Here, we demonstrate the growth of large-area BlueP films on Cu(111), with lateral size limited by the wafer dimensions. Importantly, we discovered that the BlueP is characterized by an ultraflat honeycomb lattice, rather than the prevailing buckled structure, and develops highly ordered spatial chirality plausibly resulting from the rotational stacking with the substrate and interface strain release, as further confirmed by the geometric phase analysis. Moreover, spectroscopic measurements reveal its intrinsic metallic nature and different characteristic quantum oscillations in the image-potential states, which can be exploited for a range of potential applications including polarization optics, spintronics, and chiral catalysis.

Suggested Citation

  • Ye-Heng Song & M. U. Muzaffar & Qi Wang & Yunhui Wang & Yu Jia & Ping Cui & Weifeng Zhang & Xue-Sen Wang & Zhenyu Zhang, 2024. "Realization of large-area ultraflat chiral blue phosphorene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45263-6
    DOI: 10.1038/s41467-024-45263-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45263-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45263-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyung Yeol Ma & Leining Zhang & Sunghwan Jin & Yan Wang & Seong In Yoon & Hyuntae Hwang & Juseung Oh & Da Sol Jeong & Meihui Wang & Shahana Chatterjee & Gwangwoo Kim & A-Rang Jang & Jieun Yang & Sunmi, 2022. "Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111)," Nature, Nature, vol. 606(7912), pages 88-93, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junzhu Li & Abdus Samad & Yue Yuan & Qingxiao Wang & Mohamed Nejib Hedhili & Mario Lanza & Udo Schwingenschlögl & Iwnetim Abate & Deji Akinwande & Zheng Liu & Bo Tian & Xixiang Zhang, 2024. "Single-crystal hBN Monolayers from Aligned Hexagonal Islands," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jingxian Zhong & Dawei Zhou & Qi Bai & Chao Liu & Xinlian Fan & Hehe Zhang & Congzhou Li & Ran Jiang & Peiyi Zhao & Jiaxiao Yuan & Xiaojiao Li & Guixiang Zhan & Hongyu Yang & Jing Liu & Xuefen Song & , 2024. "Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Alberto Montanaro & Giulia Piccinini & Vaidotas Mišeikis & Vito Sorianello & Marco A. Giambra & Stefano Soresi & Luca Giorgi & Antonio D’Errico & K. Watanabe & T. Taniguchi & Sergio Pezzini & Camilla , 2023. "Sub-THz wireless transmission based on graphene-integrated optoelectronic mixer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Bo Tian & Junzhu Li & Qingxiao Wang & Abdus Samad & Yue Yuan & Mohamed Nejib Hedhili & Arun Jangir & Marco Gruenewald & Mario Lanza & Udo Schwingenschlögl & Torsten Fritz & Xixiang Zhang & Zheng Liu, 2024. "Ultraflat Cu(111) foils by surface acoustic wave-assisted annealing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Fankai Zeng & Ran Wang & Wenya Wei & Zuo Feng & Quanlin Guo & Yunlong Ren & Guoliang Cui & Dingxin Zou & Zhensheng Zhang & Song Liu & Kehai Liu & Ying Fu & Jinzong Kou & Li Wang & Xu Zhou & Zhilie Tan, 2023. "Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45263-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.