IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45207-0.html
   My bibliography  Save this article

Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize

Author

Listed:
  • Nanqi Wang

    (China Agricultural University)

  • Tianqi Wang

    (China Agricultural University)

  • Yu Chen

    (Jiangsu Province and Chinese Academy of Sciences)

  • Ming Wang

    (Nanjing Agricultural University)

  • Qiaofang Lu

    (China Agricultural University)

  • Kunguang Wang

    (China Agricultural University)

  • Zhechao Dou

    (China Agricultural University)

  • Zhiguang Chi

    (China Agricultural University)

  • Wei Qiu

    (China Agricultural University)

  • Jing Dai

    (China Agricultural University)

  • Lei Niu

    (China Agricultural University)

  • Jianyu Cui

    (China Agricultural University)

  • Zhong Wei

    (Nanjing Agricultural University)

  • Fusuo Zhang

    (China Agricultural University)

  • Rolf Kümmerli

    (University of Zurich)

  • Yuanmei Zuo

    (China Agricultural University)

Abstract

Intercropping has the potential to improve plant nutrition as well as crop yield. However, the exact mechanism promoting improved nutrient acquisition and the role the rhizosphere microbiome may play in this process remains poorly understood. Here, we use a peanut/maize intercropping system to investigate the role of root-associated microbiota in iron nutrition in these crops, combining microbiome profiling, strain and substance isolation and functional validation. We find that intercropping increases iron nutrition in peanut but not in maize plants and that the microbiota composition changes and converges between the two plants tested in intercropping experiments. We identify a Pseudomonas secreted siderophore, pyoverdine, that improves iron nutrition in glasshouse and field experiments. Our results suggest that the presence of siderophore-secreting Pseudomonas in peanut and maize intercropped plays an important role in iron nutrition. These findings could be used to envision future intercropping practices aiming to improve plant nutrition.

Suggested Citation

  • Nanqi Wang & Tianqi Wang & Yu Chen & Ming Wang & Qiaofang Lu & Kunguang Wang & Zhechao Dou & Zhiguang Chi & Wei Qiu & Jing Dai & Lei Niu & Jianyu Cui & Zhong Wei & Fusuo Zhang & Rolf Kümmerli & Yuanme, 2024. "Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45207-0
    DOI: 10.1038/s41467-024-45207-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45207-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45207-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Motofumi Suzuki & Atsumi Urabe & Sayaka Sasaki & Ryo Tsugawa & Satoshi Nishio & Haruka Mukaiyama & Yoshiko Murata & Hiroshi Masuda & May Sann Aung & Akane Mera & Masaki Takeuchi & Keijo Fukushima & Mi, 2021. "Development of a mugineic acid family phytosiderophore analog as an iron fertilizer," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Gao, Yang & Duan, Aiwang & Qiu, Xinqiang & Liu, Zugui & Sun, Jingsheng & Zhang, Junpeng & Wang, Hezhou, 2010. "Distribution of roots and root length density in a maize/soybean strip intercropping system," Agricultural Water Management, Elsevier, vol. 98(1), pages 199-212, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamsal, Abhishes & Welch, S.M. & Jones, J.W. & Boote, K.J. & Asebedo, Antonio & Crain, Jared & Wang, Xu & Boyer, Will & Giri, Anju & Frink, Elizabeth & Xu, Xuan & Gundy, Garrison & Ou, Junjun & Arachc, 2017. "Efficient crop model parameter estimation and site characterization using large breeding trial data sets," Agricultural Systems, Elsevier, vol. 157(C), pages 170-184.
    2. Ling Dong & Lijie Li & Yao Meng & Hongliang Liu & Jing Li & Yang Yu & Chunrong Qian & Shi Wei & Wanrong Gu, 2022. "Exogenous Spermidine Optimizes Nitrogen Metabolism and Improves Maize Yield under Drought Stress Conditions," Agriculture, MDPI, vol. 12(8), pages 1-20, August.
    3. Wenwen Wei & Tingting Liu & Lei Shen & Xiuyuan Wang & Shuai Zhang & Wei Zhang, 2022. "Effect of Maize ( Zeal mays ) and Soybean ( Glycine max ) Intercropping on Yield and Root Development in Xinjiang, China," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    4. Gabriel Ribeiro Castellano & Landerlei Almeida Santos & Amauri Antonio Menegário, 2022. "Carbon Soil Storage and Technologies to Increase Soil Carbon Stocks in the South American Savanna," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    5. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2021. "Effects of mulch and irrigation regimes on water distribution and root competition in an apple–soybean intercropping system in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Jha, Shiva K. & Gao, Yang & Liu, Hao & Huang, Zhongdong & Wang, Guangshuai & Liang, Yueping & Duan, Aiwang, 2017. "Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China," Agricultural Water Management, Elsevier, vol. 182(C), pages 139-150.
    7. Shirley LAMPTEY & Lingling LI & Junhong XIE, 2018. "Impact of nitrogen fertilization on soil respiration and net ecosystem production in maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 353-360.
    8. Pinheiro, Everton Alves Rodrigues & de Jong van Lier, Quirijn & Šimůnek, Jirka, 2019. "The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 364-377.
    9. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    10. Affendy Hassan & Dorte Bodin Dresbøll & Kristian Thorup-Kristensen, 2021. "Naturally coloured roots as a tool for studying root interactions in mixed cropping," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(12), pages 700-710.
    11. Lu, Junsheng & Hu, Tiantian & Zhang, Baocheng & Wang, Li & Yang, Shuohuan & Fan, Junliang & Yan, Shicheng & Zhang, Fucang, 2021. "Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    12. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    13. Zhang, Cong & Ren, Yuanyuan & Yan, Minfei & He, Zhan & Chen, Yinglong & Zhang, Suiqi, 2023. "Effect of sowing date on water uptake patterns of maize and soybean in intercropping systems using stable isotopes," Agricultural Water Management, Elsevier, vol. 288(C).
    14. Gong, Xiangwei & Dang, Ke & Liu, Long & Zhao, Guan & Lv, Siming & Tian, Lixin & Jin, Fei & Feng, Yu & Zhao, Yingnan & Feng, Baili, 2021. "Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Victor Meriguetti Pinto & Jos C. van Dam & Quirijn de Jong van Lier & Klaus Reichardt, 2019. "Intercropping Simulation Using the SWAP Model: Development of a 2×1D Algorithm," Agriculture, MDPI, vol. 9(6), pages 1-19, June.
    16. Liu, Haijun & Zhang, Ruihao & Zhang, Liwei & Wang, Xuming & Li, Yan & Huang, Guanhua, 2015. "Stemflow of water on maize and its influencing factors," Agricultural Water Management, Elsevier, vol. 158(C), pages 35-41.
    17. Yin, Wen & Chai, Qiang & Zhao, Cai & Yu, Aizhong & Fan, Zhilong & Hu, Falong & Fan, Hong & Guo, Yao & Coulter, Jeffrey A., 2020. "Water utilization in intercropping: A review," Agricultural Water Management, Elsevier, vol. 241(C).
    18. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    19. repec:mth:jas888:v:6:y:2018:i:2:p:1-16 is not listed on IDEAS
    20. Qiang Liu & Tsubasa Kawai & Yoshiaki Inukai & Dan Aoki & Zhihang Feng & Yihui Xiao & Kazuhiko Fukushima & Xianyong Lin & Weiming Shi & Wolfgang Busch & Yasuyuki Matsushita & Baohai Li, 2023. "A lignin-derived material improves plant nutrient bioavailability and growth through its metal chelating capacity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    21. Atsushi Yamagata & Yoshiko Murata & Kosuke Namba & Tohru Terada & Shuya Fukai & Mikako Shirouzu, 2022. "Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45207-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.