IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45044-1.html
   My bibliography  Save this article

Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging

Author

Listed:
  • Juan Ignacio Jiménez-Loygorri

    (Centro de Investigaciones Biológicas Margarita Salas, CSIC)

  • Beatriz Villarejo-Zori

    (Centro de Investigaciones Biológicas Margarita Salas, CSIC)

  • Álvaro Viedma-Poyatos

    (Centro de Investigaciones Biológicas Margarita Salas, CSIC)

  • Juan Zapata-Muñoz

    (Centro de Investigaciones Biológicas Margarita Salas, CSIC)

  • Rocío Benítez-Fernández

    (Centro de Investigaciones Biológicas Margarita Salas, CSIC
    University of Fribourg)

  • María Dolores Frutos-Lisón

    (Food & Health Lab, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC)

  • Francisco A. Tomás-Barberán

    (Food & Health Lab, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC)

  • Juan Carlos Espín

    (Food & Health Lab, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC)

  • Estela Area-Gómez

    (Centro de Investigaciones Biológicas Margarita Salas, CSIC)

  • Aurora Gomez-Duran

    (Centro de Investigaciones Biológicas Margarita Salas, CSIC
    Universidade de Santiago de Compostela)

  • Patricia Boya

    (Centro de Investigaciones Biológicas Margarita Salas, CSIC
    University of Fribourg)

Abstract

Macroautophagy decreases with age, and this change is considered a hallmark of the aging process. It remains unknown whether mitophagy, the essential selective autophagic degradation of mitochondria, also decreases with age. In our analysis of mitophagy in multiple organs in the mito-QC reporter mouse, mitophagy is either increased or unchanged in old versus young mice. Transcriptomic analysis shows marked upregulation of the type I interferon response in the retina of old mice, which correlates with increased levels of cytosolic mtDNA and activation of the cGAS/STING pathway. Crucially, these same alterations are replicated in primary human fibroblasts from elderly donors. In old mice, pharmacological induction of mitophagy with urolithin A attenuates cGAS/STING activation and ameliorates deterioration of neurological function. These findings point to mitophagy induction as a strategy to decrease age-associated inflammation and increase healthspan.

Suggested Citation

  • Juan Ignacio Jiménez-Loygorri & Beatriz Villarejo-Zori & Álvaro Viedma-Poyatos & Juan Zapata-Muñoz & Rocío Benítez-Fernández & María Dolores Frutos-Lisón & Francisco A. Tomás-Barberán & Juan Carlos Es, 2024. "Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45044-1
    DOI: 10.1038/s41467-024-45044-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45044-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45044-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David E. Harrison & Randy Strong & Zelton Dave Sharp & James F. Nelson & Clinton M. Astle & Kevin Flurkey & Nancy L. Nadon & J. Erby Wilkinson & Krystyna Frenkel & Christy S. Carter & Marco Pahor & Ma, 2009. "Rapamycin fed late in life extends lifespan in genetically heterogeneous mice," Nature, Nature, vol. 460(7253), pages 392-395, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel J. Ham & Anastasiya Börsch & Kathrin Chojnowska & Shuo Lin & Aurel B. Leuchtmann & Alexander S. Ham & Marco Thürkauf & Julien Delezie & Regula Furrer & Dominik Burri & Michael Sinnreich & Chris, 2022. "Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Marcin Pilarczyk & Mehdi Fazel-Najafabadi & Michal Kouril & Behrouz Shamsaei & Juozas Vasiliauskas & Wen Niu & Naim Mahi & Lixia Zhang & Nicholas A. Clark & Yan Ren & Shana White & Rashid Karim & Huan, 2022. "Connecting omics signatures and revealing biological mechanisms with iLINCS," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Debonneuil, Edouard & Loisel, Stéphane & Planchet, Frédéric, 2018. "Do actuaries believe in longevity deceleration?," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 325-338.
    5. Jae Sung Lim & Eun Jae Jeon & Hye Sun Go & Hyung-Jin Kim & Kye Young Kim & Thi Quynh Trang Nguyen & Da Young Lee & Kyu Suk Kim & Federico Pietrocola & Seol Hee Hong & Shee Eun Lee & Kyoung-Shim Kim & , 2024. "Mucosal TLR5 activation controls healthspan and longevity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    7. Kan Xie & Helmut Fuchs & Enzo Scifo & Dan Liu & Ahmad Aziz & Juan Antonio Aguilar-Pimentel & Oana Veronica Amarie & Lore Becker & Patricia da Silva-Buttkus & Julia Calzada-Wack & Yi-Li Cho & Yushuang , 2022. "Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice," Nature Communications, Nature, vol. 13(1), pages 1-29, December.
    8. Cox, Lynne S., 2022. "Therapeutic approaches to treat and prevent age-related diseases through understanding the underlying biological drivers of ageing," The Journal of the Economics of Ageing, Elsevier, vol. 23(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45044-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.