IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44802-5.html
   My bibliography  Save this article

How solute atoms control aqueous corrosion of Al-alloys

Author

Listed:
  • Huan Zhao

    (Max-Planck-Institut für Eisenforschung
    Xi’an Jiaotong University)

  • Yue Yin

    (Max-Planck-Institut für Eisenforschung)

  • Yuxiang Wu

    (Max-Planck-Institut für Eisenforschung)

  • Siyuan Zhang

    (Max-Planck-Institut für Eisenforschung)

  • Andrea M. Mingers

    (Max-Planck-Institut für Eisenforschung)

  • Dirk Ponge

    (Max-Planck-Institut für Eisenforschung)

  • Baptiste Gault

    (Max-Planck-Institut für Eisenforschung
    Imperial College London)

  • Michael Rohwerder

    (Max-Planck-Institut für Eisenforschung)

  • Dierk Raabe

    (Max-Planck-Institut für Eisenforschung)

Abstract

Aluminum alloys play an important role in circular metallurgy due to their good recyclability and 95% energy gain when made from scrap. Their low density and high strength translate linearly to lower greenhouse gas emissions in transportation, and their excellent corrosion resistance enhances product longevity. The durability of Al alloys stems from the dense barrier oxide film strongly bonded to the surface, preventing further degradation. However, despite decades of research, the individual elemental reactions and their influence on the nanoscale characteristics of the oxide film during corrosion in multicomponent Al alloys remain unresolved questions. Here, we build up a direct correlation between the near-atomistic picture of the corrosion oxide film and the solute reactivity in the aqueous corrosion of a high-strength Al-Zn-Mg-Cu alloy. We reveal the formation of nanocrystalline Al oxide and highlight the solute partitioning between the oxide and the matrix and segregation to the internal interface. The sharp decrease in partitioning content of Mg in the peak-aged alloy emphasizes the impact of heat treatment on the oxide stability and corrosion kinetics. Through H isotopic labelling with deuterium, we provide direct evidence that the oxide acts as a trap for this element, pointing at the essential role of the Al oxide might act as a kinetic barrier in preventing H embrittlement. Our findings advance the mechanistic understanding of further improving the stability of Al oxide, guiding the design of corrosion-resistant alloys for potential applications.

Suggested Citation

  • Huan Zhao & Yue Yin & Yuxiang Wu & Siyuan Zhang & Andrea M. Mingers & Dirk Ponge & Baptiste Gault & Michael Rohwerder & Dierk Raabe, 2024. "How solute atoms control aqueous corrosion of Al-alloys," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44802-5
    DOI: 10.1038/s41467-024-44802-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44802-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44802-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stuart Lyon, 2004. "A natural solution to corrosion?," Nature, Nature, vol. 427(6973), pages 406-407, January.
    2. Martí López Freixes & Xuyang Zhou & Huan Zhao & Hélène Godin & Lionel Peguet & Timothy Warner & Baptiste Gault, 2022. "Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Huan Zhao & Poulami Chakraborty & Dirk Ponge & Tilmann Hickel & Binhan Sun & Chun-Hung Wu & Baptiste Gault & Dierk Raabe, 2022. "Hydrogen trapping and embrittlement in high-strength Al alloys," Nature, Nature, vol. 602(7897), pages 437-441, February.
    4. Xiaogang Li & Dawei Zhang & Zhiyong Liu & Zhong Li & Cuiwei Du & Chaofang Dong, 2015. "Materials science: Share corrosion data," Nature, Nature, vol. 527(7579), pages 441-442, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. X. X. Wei & B. Zhang & B. Wu & Y. J. Wang & X. H. Tian & L. X. Yang & E. E. Oguzie & X. L. Ma, 2022. "Enhanced corrosion resistance by engineering crystallography on metals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Chengyi Yu & Kun Lin & Qinghua Zhang & Huihui Zhu & Ke An & Yan Chen & Dunji Yu & Tianyi Li & Xiaoqian Fu & Qian Yu & Li You & Xiaojun Kuang & Yili Cao & Qiang Li & Jinxia Deng & Xianran Xing, 2024. "An isotropic zero thermal expansion alloy with super-high toughness," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Martí López Freixes & Xuyang Zhou & Huan Zhao & Hélène Godin & Lionel Peguet & Timothy Warner & Baptiste Gault, 2022. "Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Xiaomei Huang & Mengxiao Sun & Yinhu Kang, 2019. "Fireside Corrosion on Heat Exchanger Surfaces and Its Effect on the Performance of Gas-Fired Instantaneous Water Heaters," Energies, MDPI, vol. 12(13), pages 1-21, July.
    5. Sun, Haofei & Wang, Haoxiang & Zeng, Yimin & Liu, Jing, 2023. "Corrosion challenges in supercritical CO2 transportation, storage, and utilization—a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Zhenyang Li & Shiyuan Liu & Yanhui Pu & Gang Huang & Yingbo Yuan & Ruiqi Zhu & Xufeng Li & Chunyan Chen & Gao Deng & Haihan Zou & Peng Yi & Ming Fang & Xin Sun & Junzhe He & He Cai & Jiaxiang Shang & , 2023. "Single-crystal ZrCo nanoparticle for advanced hydrogen and H-isotope storage," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Avinash Borgaonkar & Greg McNamara, 2024. "Environmental Impact Assessment of Anti-Corrosion Coating Life Cycle Processes for Marine Applications," Sustainability, MDPI, vol. 16(13), pages 1-11, June.
    8. Lei Guo & Yue Huang & Yundong Wu & Wei Shi & Faheem Abbas & Yuanhua Lin & Riadh Marzouki & Xingwen Zheng, 2023. "Experimental and Theoretical Studies of the Corrosion Inhibition Performance of a Quaternary Phosphonium-Based Ionic Liquid for Mild Steel in HCl Medium," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    9. Pang-Yu Liu & Boning Zhang & Ranming Niu & Shao-Lun Lu & Chao Huang & Maoqiu Wang & Fuyang Tian & Yong Mao & Tong Li & Patrick A. Burr & Hongzhou Lu & Aimin Guo & Hung-Wei Yen & Julie M. Cairney & Hao, 2024. "Engineering metal-carbide hydrogen traps in steels," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Cheng, Guang & Wang, Xiaoli & Chen, Kaiyuan & Zhang, Yang & Venkatesh, T.A. & Wang, Xiaolin & Li, Zunzhao & Yang, Jing, 2023. "Probing the effects of hydrogen on the materials used for large-scale transport of hydrogen through multi-scale simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44802-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.